Author Summary SINEs are mobile elements that are found ubiquitously throughout a large diversity of genomes from plants to mammals. The human SINE, Alu, is among the most successful mobile elements, with more than one million copies in the genome. Due to its high activity and ability to insert throughout the genome, Alu retrotransposition is responsible for the majority of diseases reported to be caused by mobile element activity. To further evaluate the genomic impact of SINEs, we recovered and characterized over 200 de novo Alu inserts under controlled conditions. Our data reinforce observations on the mutagenic potential of Alu, with newly retrotransposed Alu elements favoring insertion into genic and highly conserved elements. Alu-mediated deletions and rearrangements are infrequent and lack the typical hallmarks of TPRT retrotransposition, suggesting the use of an alternate method for resolving retrotransposition intermediates or an atypical insertion mechanism. Our data also provide novel insights into SINE retrotransposition biology. We found that slippage of L1 ORF2 protein during reverse transcription expands the A-tails of de novo insertions. We propose that the L1 ORF2 protein plays a major role in minimizing Alu extinction by reintroducing active Alu elements to counter the natural loss of Alu source elements.