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The photosynthetic cyanobacterium Synechocystis sp. strain PCC 6803 uses a complex genetic program to control its
physiological response to alternating light conditions. To study this regulatory program time-series experiments were
conducted by exposing Synechocystis sp. to serial perturbations in light intensity. In each experiment whole-genome
DNA microarrays were used to monitor gene transcription in 20-min intervals over 8- and 16-h periods. The data
was analyzed using time-lagged correlation analysis, which identifies genetic interaction networks by constructing
correlations between time-shifted transcription profiles with different levels of statistical confidence. These networks
allow inference of putative cause-effect relationships among the organism’s genes. Using light intensity as our initial
input signal, we identified six groups of genes whose time-lagged profiles possessed significant correlation, or
anti-correlation, with the light intensity. We expanded this network by using the average profile from each group of
genes as a seed, and searching for other genes whose time-lagged profiles possessed significant correlation, or
anti-correlation, with the group’s average profile. The final network comprised 50 different groups containing 259
genes. Several of these gene groups possess known light-stimulated gene clusters, such as Synechocystis sp. photosystems
I and II and carbon dioxide fixation pathways, while others represent novel findings in this work.

The DNA microarray has become an established tool for the par-
allel monitoring of gene expression profiles. Most common ex-
perimental design strategies observe static gene expression dif-
ferences between conditions, such as disease versus nondisease
case comparisons. While such experiments generate information
for diagnostic applications, they are not well suited for uncover-
ing the roles of these genes in the larger context of cellular regu-
lation.

Dynamic transcriptional data allow the formation of gene
clusters with similar temporal expression profiles. The various
forms of clustering (Eisen et al. 1998; Alter et al. 2000; Holter et
al. 2000) employed to date have produced valuable information,
including potential gene relationships and the identity of tran-
scription factor binding motifs. These methods, however, are
limited in their ability to infer causality or directional relation-
ships between genes. The results of clustering algorithms often
yield relations such as “gene A is a good predictor of gene B,”
which is an equivalent statement to “gene B is a good predictor
of gene A.” Neither Bayesian networks (Friedman et al. 2000), nor
information theory-based approaches (Somogyi and Fuhrman
1997) have made use of the sequential nature of time-series data
in current applications. Conversely, when enough time points
are available to prevent over fitting the data and find statistically
significant correlations, a discovery method to uncover potential
causal relationships among genes may be attempted. Direction-
ality can be added to these probabilistic networks by determining
the temporal order in which gene expression patterns are affected
in a sequence.

Consider Figure 1 in which an input signal, such as light
intensity, affects the transcription of a pair of genes through a
cascade from gene 1 to gene 2. In an experiment that only mea-

sures static gene expression values at each input signal intensity,
the best conclusion that might be drawn from such data is that
the genes are somehow related. On the other hand, if dynamic
experiments are conducted that allow the observation of delayed
responses, then it is possible to extract additional information
from these measurements pointing to potential directionality.

A relatively complete picture of transcriptional regulatory
behavior should be possible by probing the transcriptional dy-
namics of carefully designed experiments covering a wide range
of conditions. Dynamic experiments that sequentially vary ex-
ternal parameters offer insights into how cellular physiology de-
pends on changing environmental conditions. Time-lagged cor-
relation analysis is one method that can be applied to infer pu-
tative causal relationships between system perturbations and
system responses.

Linear Pearson correlations have been used to identify genes
that are coexpressed or antiexpressed for clustering purposes
(D’Haeseleer et al. 1998; Kuruvilla et al. 2002). Time-lagged cor-
relations extend this technique by determining the best correla-
tions among profiles shifted in time. For a transcription profile
represented by a series of n measurements taken at equally spaced
time points, the correlation between genes i and j with a time lag,
�, is R(�) = (rij(�)), defined by

Sij��� = ��xi�t� − xi��xj�t + �� − xj�� (1)

rij��� =
Sij���

�Sii���Sjj��)
(2)

where xi(t) denotes the expression of gene i at time t, xi is the
expression value of gene i averaged across all time points, and the
angled brackets represent the inner product between the time-
shifted profiles. The matrix of lagged correlations R(�) can be
used to rank the correlation and anticorrelation between genes
through conversion to a Euclidean distance metric, dij:

dij = �cii − 2cij + cjj�
1�2 = �2 �1.0 − cij�

1�2 (3)
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cij = max
�

�rij ���� (4)

where, cij is the maximum absolute value of the correlation be-
tween two genes with a time lag �. If the value of � that gives the
maximum correlation is 0, then the two genes are best correlated
with no time lag. The matrix D = (dij) describes the correlation
between two genes, i and j, in terms of “distance” by making
genes that are least correlated (for any �) the “farthest” apart
(Arkin and Ross 1995). Thus by transforming the correlation ma-
trix, R, into a distance matrix, D, we are able to include highly
anticorrelated genes, in addition to correlated genes, in the net-
work. By finding genes that are closely related and then exam-
ining the corresponding value of �, an underlying network of
potential cause and effect relationships can be elucidated. Some
caution is needed to ensure genes with high correlation have
been chosen using enough data points to give statistical signifi-
cance, otherwise all of the � values used will merely overfit the
data. Such errors may be obvious if values for � are unreasonably
long from a biological standpoint.

Arkin, Shen, and Ross (1997) previously used time-lagged
correlations to “reconstruct” the reaction network of central car-
bon metabolism by placing eight major enzymes and 14 chemi-
cal components into a continuous
stirred tank reactor and inducing dy-
namic concentration shifts of the
chemical species. Concentrations of
the major chemical species were
measured throughout the experi-
ment, while the input concentra-
tions of citrate and adenosine mono-
phosphate (AMP) were periodically
adjusted to keep the system away
from steady-state. Using time-lagged
correlations to analyze the output
data, these authors were able to re-
create most of the features from the
original pathway; however, some of
the interactions were not recovered
in the reconstruction attempt. For
example the inhibitory impact of cit-
rate on the conversion of fructose-6-
phosphate (F6P) to fructose 1,6-
bisphosphate (F16BP) was not in-
cluded. Furthermore, species that are
not controlled or measured cannot

be placed in the network. Despite these
drawbacks, this example showed that
even when the specific method of inter-
action is unknown or unmeasured, use-
ful information could be inferred about
the overall structure of a network from
forced dynamic experiments.

By sequencing the Synechocystis ge-
nome (Kaneko et al. 1996), it is now pos-
sible to begin investigating the systemic
properties of the organism. As a model
system, increasing interest in the cyano-
bacterium Synechocystis PCC6803 has fo-
cused on the organism’s ability to syn-
thesize various chemicals such as poly-
hydroxyalkanoate (PHA) biopolymers.
Coupled with the cyanobacterium’s CO2

fixation ability, Synechocystis represents
a potentially useful biocatalyst for the
conversion of CO2 gas emissions into
value-added materials. On the other

hand, the organism suffers from a relatively slow growth rate and
low PHA yields, which create economic hurdles that must be
overcome before its implementation in commercial processes.
Understanding, and subsequently improving, network properties
may help alleviate these obstacles, enabling the carbon-fixing
and product forming potential of Synechocystis to be exploited for
industrial purposes.

In this work we identified a network of putative directional
interactions between cascades of genes by using time-lagged cor-
relation analysis. This network relates the changing light input
signal to dynamic gene transcription data obtained using full
genome DNA microarrays (Schmitt Jr. and Stephanopoulos 2003)
in cultures of the cyanobacterium Synechocystis PCC6803. Pertur-
bations in light intensity are easy to implement experimentally and
have minimal diffusional time lag. Synechocystis is particularly well-
suited to this type of regulatory analysis because the expression
levels of many genes change over a period of 24 h in response to
environmental light changes (Hihara et al. 2001; Gill et al. 2002).

RESULTS
In the first experiment the culture was exposed to a series of
three-step changes in light intensity ranging from 0 to 16 to 90

Figure 1 Idealized gene expression experimental results, where measurable time lags �1 and �2 are
indicative of the underlying cascade of biochemical reactions which lead to the input signal’s effect on
the genes.

Figure 2 Experimental set-up and light intensity profiles for both experiments.
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µmol/m2/s, as shown in Figure 2. Forty-seven of the fifty samples
from this experiment were successfully hybridized to DNA mi-
croarrays and provided sufficient signal intensities for further
analysis. Two iterations of the time-lagged correlation implemen-
tation algorithm were applied to this data. Figure 3 shows 64
genes that were divided among six groups with high correlation
directly to the input signal (|R| > 0.7 for at least one member of
the group), while Figure 4 shows the expansion of this original
set to 50 groups comprising 259 genes, using an additional itera-
tion of the algorithm. Both time-lagged correlations (bold ar-
rows) and time-lagged anticorrelations (dotted arrows) are
shown, along with zero-lagged correlations (straight lines). Note
that genes correlated with no lag to other genes need not neces-
sarily belong in the same group, as they do not show the same
degree of correlation with other clusters in the diagram. It is
possible that further experiments will confirm their inclusion
into a single group, or suggest the elimination of one or both of
the two groups.

The annotated genes that respond to the input light signal
in a time-lag “wave” are listed in Table 1. Among the transcripts
in Table 1, many encode proteins found in the Synechocystis
photosystem complexes. For example, genes associated with
photosystem I (such as psaE or psaK) and photosystem II (such
as psbEFLJ) seem to become activated at several different time lags
relative to the light intensity. Interestingly, this analysis also
found both ycf3 and ycf48 having transcriptional expression co-
ordinated with light exposure with the minimum time lag of 20
min. It has been suggested that these genes contribute to either
assembly or stability of photosystem I (Wilde et al. 2001) and II
(Meurer et al. 1998). The fast response at the transcriptional level
of ycf3 and ycf48 to changing light conditions is consistent with
these hypotheses. Additionally, Table 1 lists many of the sub-
units for ATP synthase (such as atpCADFGHI1), which are best
correlated with the light intensity at the smallest measurable
time lag of 20 min. At least one subunit for the cytochrome
complex (petG) was also identified.

Other genes that are known to be light-regulated, such
as apcF, apcE, and apcABC (Gill et al. 2002) also fall into groups
with other highly correlated genes. These allophycocyanin genes

all possess a time lag of 20 min, while several phycocyanin
genes, such as cpcABC2C1D, have a greater time lag (Table 1;
note that cpcC1 was filtered from the original analysis due to low
expression ratios, but is in fact well correlated with the other
genes listed). Given that the allophycocyanin units make up the
core of the phycobilisome structure, while the phycocyanin
genes make up the rod-like projections from this core, a model
of sequential activation seems plausible and agrees with the tran-
scription of the allophycocyanin genes preceding that of
the phycocyanin genes. Furthermore, cpcG1, found at the earliest
measured time lag, links the phycocyanin rods to the core
allopycocyanin proteins of the phycobilisome (Bryant et al.
1990).

As reported in earlier studies (Watson and Tabita 1996; Hi-
hara et al. 2001; Gill et al. 2002), the sub-units of the carbon-
dioxide fixation complex rubisco (rbcL, rbcS, and the potential
chaperone protein rbcX) are shown to be highly correlated with
light intensity at the transcriptional level. Other findings, includ-
ing a homolog of the carbon dioxide concentration unit ccmK
(Watson and Tabita 1996), as well as a handful of genes related to
metabolism (icd, gap2, etc.), are also cataloged in Table 1.

In addition to validating the response of known light sen-
sitive genes, some information concerning the roles, and poten-
tial interactions, of putative genes can be derived from our analy-
sis. Genes slr0581 and slr0582, were inversely correlated to the
light intensity. A homology search using BLAST on these open
reading frames (ORFs) suggests no strong homologies with
known proteins, so assigning a functional role is difficult. How-
ever, slr0582 has at least some similarity with putative binding
factors, and therefore may play a role in the transcription of
genes regulated as a response to light. Furthermore, slr0581,
which had a sufficiently strong signal at every time point to be
included in the Principle Component Analysis (Raychaudhuri et
al. 2000), has one of the larger loading coefficients determining
the shape of Figure 5. This pair of adjacent genes, with operon-
like coexpression and a high correlation to light-regulated genes
in Synechocystis, requires further study to determine their actual
function, but testable hypotheses can be formulated from our
work.

Figure 3 Simplified time-lagged correlation network from Synechocystis sp. PCC6803. The arrows indicate close correlation (|R| > 0.70) between
groups, and the corresponding numbers indicate the time lag relative to the input. The network is derived from data from Experiment 1. Dashed lines
indicate inverse correlation.
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Although we used levels of R large enough to minimize the
chance of randomly observing highly correlated genes, a second
experiment, with a different input light signal (see Fig. 2) was
conducted to test the correlations observed in the first experi-
ment. Results for the genes shown in Figure 3 are shown in Table
2. Most of these genes have similar correlations with the input
signal in both experiments. Exceptions that have different values
between the experiments, could then be used to “prune” or ad-
just the networks shown in Figures 3 and 4. Consider, for ex-
ample, the cpc genes found in Group 7, which seem to correlate
less well in the second experiment. Although the correlation is
still significant at this level for a time lag of two units (40 min),
we also observe a nearly equal correlation at a lag of three units
(60 min), and further experiments are required to accurately plot
these genes within the network. However, unless exceedingly
low correlation is observed, such connections cannot reasonably
be rejected with only this data, and testing the correlations using
complementary techniques would be highly beneficial.

Having conducted two sets of experiments under different
input light profiles, the consistency of the measured transcrip-
tional profiles was investigated. One way to do so is by projecting
the transcriptional state of the cells in a reduced dimensional
space, defined by coordinates that are linear combinations of the
gene expression data. In such a space we anticipate that cellular
samples taken under similar experimental conditions will cluster
together. Principal components analysis (PCA) was used as an
unsupervised data visualization tool to test whether cells exposed
to the same environmental conditions in different experiments
clustered together in the space defined using the first two prin-
ciple components (Misra et al. 2002) of the combined data sets.

Only genes with expression values for all 74 samples, from

both experiments, were considered in the PCA analysis. For these
113 genes, the two largest principle components account for ap-
proximately 68.7% of the variance. Figure 5 shows the 74
samples in a space defined by the two principal components. It
can be seen that samples obtained during the “dark” conditions
(with a time lag of 20 min) reside in an area distinct from those
obtained during either of the light conditions in both experi-
ments, with the exception of a single, easily identified outlier
point from the second experiment. Not surprisingly, examina-
tion of the gene loadings (Misra et al. 2002) used to create Figure
5 shows that many of the genes in the networks of Figures 3 and
4 are key to this distinction (data not shown).

To further substantiate the results of the analysis two sets of
simulations were conducted. In the first set of simulations we
reanalyzed the data set using only half the data points. Thus
instead of having 47 data points at 20-min intervals, we used 24
data points at 40-min intervals. Genes that possessed a maximum
correlation value at a time lag of 20 min in the original data (47
time points) set fell into either the 0- or 40-min time-lagged
group when 40-min sampling intervals were used. Likewise,
genes that possessed a maximum correlation value at a time lag
of 60 min in the original data set were placed in either the 40 or
80 min group. Although some additional genes now pass the
|R| > 0.70 threshold and enter the analysis, none of the genes
that were identified using all 47 time points are eliminated from
the analysis when only 24 time points are used. Thus as more
time points are used, only the strongest correlations emerge in
the analysis. In the second set of simulations we tested the sta-
tistical significance of our correlations. To do this we created 10
million sets of random data in the same format as the original
data set (47 time points) and found only two samples that had a

Figure 4 Simplified time-lagged correlation network, second iteration. The genes contained within each group are given in Table 3.
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correlation value of |R| > 0.70 for � between �40 and 40 min. For
uncorrelated data, |R| follows a t-distribution with N � 2 degrees
of freedom. In this case N = 47, thus the probability of |R| > 0.70
by chance is �0.0001. This indicates that it is extremely unlikely

to observe the correlations identified in this analysis by chance
alone.

The three design criteria that need to be considered in plan-
ning similar dynamic experiments are the frequency of sampling,
the properties of the induced perturbations, and the dynamics of
gene transcription. These factors interact with one another and
should be optimized to address a specific condition. In these
experiments we wanted to study the transcriptional dynamics of
Synechocystis sp. in response to light perturbations. Because
changes in light intensity can be introduced instantaneously, we
were not limited by diffusional effects that may slow the re-
sponse, or create varying time lags dependent upon the magni-
tude of the induced change. The induction and relaxation times
of gene transcription also need to be considered in selecting the
sampling frequency. Because changes in gene transcription have
been observed over 2- to 6-h periods (Hirahara et al. 2001; Gill et
al. 2002), a 20-min sampling was deemed sufficient to provide a
high enough resolution to accurately assess system responses on
this time scale. We note that we cannot accurately resolve higher
frequency oscillatory reactions or discrete changes in transcrip-
tion that respond in less than 20 min, either directly to the
change in light or indirectly to environmental or other gene
regulatory changes affected by the light. In these cases, if the
sampling frequency is not an even multiple of the response pe-
riod, or if the overall response is transient over the length of the
perturbation, poor correlations may be obtained (false-
negatives), or high correlations to the wrong stimuli (false-
positives). Additionally, more complex analyses meant to un-
cover multi-gene interactions occurring within these experi-
ments are certainly possible. Information-theory approaches
(D’Haeseleer et al. 1998) could be adapted to include time-lag
components to search for such relationships, but practical imple-
mentation of such an algorithm requires substantial additional
effort and is outside of the scope of this project.

DISCUSSION
We have conducted two time-series DNA microarray experi-
ments, one with 47 measurements (of 50 time points) taken over
17 h, and another of 27 measurements taken over 9 h. Both of
these experiments share the same sampling interval (20 min) and
are taken from single, homogeneous (well-stirred) cultures. These
experiments are especially unique because of the application of
an instantaneous forcing environmental input, the intensity of
the incident light to the system. Compared to earlier time-series
experiments with DNA microarrays (Chu et al. 1998; Spellman et
al. 1998; Iyer et al. 1999; Hihara et al. 2001; Gill et al. 2002), these
experiments possess a much higher, and evenly spaced, sampling
frequency. These experimental parameters were specifically de-
signed to enable the use of time-lagged correlations that could iden-
tify directional transcriptional relationships on a 20-min time scale.

Time-lagged correlations (Arkin and Ross 1995) provide a
reasonable method for extracting potential relationships within
the genetic network, and we have detailed our adjustments for
practical implementation to such large data sets that contain
significant obscuring error. For the time-interval studied, these
correlations manifest themselves as “waves” of expression in Syn-
echocystis sp. lagged at different intervals from the changing light
intensity. Larger intervals would have allowed, for the same
number of experiments, study of a longer cycle of transcriptional
events, with loss of resolution between time-scales (i.e., a 40-min
sampling period cannot distinguish between 20-, 40-, and 60-
min lag times). Similarly, for greater resolution into the ordering
of transcriptional events, smaller time-scales than those at-
tempted here may be tried, with the accompanying increase in
required arrays.

Table 1. The Expression Intervals at Which Some
Characterized Genes Are Correlated (Directly or Indirectly) to
the Experimental Light Intensity

20-min time lag
accB, efp acp apcA,B,C apcE,F,G
atpBE bioB atpC,A,D atpF,G,H
atpI,1 chIP clpP trpB,E
psaD ycf58 cpcG1 crtQ-2
cupB ctpA rbcL,X,S fus
fpg psaE tufA dnaK
glyA gap2 glnA gpx1
guaA gyrB hemB,E icd
ilvC murC nbp1 ndhH
nirA pacS petH pgk
ppa pphA ycf48 psbE,F,L
psbJ,K purD rfbFGC rfbE
rpl19,36 rps11,13 rpoC1 rps1a,20
secDF serA sigA thiC
valS ycf23,3,59 sII0822 sII0842
sII0843 sII0927 sII1009 sII1069
sII1070 sII1130 sII1213 sII1234
sII1515 sII1665 sII1835 sII1921
sII1945 sII1951 sIr0193 sIr0447
sIr0483 sIr0484 sIr0518 sIr0581
sIr0582 sIr0587 sIr0654 sIr0752
sIr0773 sIr0776 sIr0822 sIr0967
sIr0981 sIr0982 sIr1020 sIr1050
sIr1051 sIr1052 sIr1062 sIr1063
sIr1105 sIr1160 sIr1176 sIr1177
sIr1232 sIr1237 sIr1276 sIr1277
sIr1331 sIr1336 sIr1349 sIr1363
sIr1431 sIr1462 sIr1464 sIr1535
sIr1616 sIr1617 sIr1618 sIr1619
sIr1623 sIr1624 sIr1712 sIr1770
sIr1855 sIr2002 sIr2025 sIr2046
sIr2047 sIr2048 sIr2052 ssI0832
ss1263 ssl1911 ssI2245 ssr0692
ssr2078 ssr2227 ssr2998
40-min time lag
ccmK gap1 glnB hemD
cpcA,B,C2 cpcC1,D natE nblA1
ndbB ndhD1 psaC ndhJ
petF,G pppA psaL,I,F psaJ,K
psbI,X ribF rpl21,27 rps15
rps21,r serS sodB sII0062
sII0063 sII0064 sII0085 sII0086
sII0096 sII0103 sII0135 sII0163
sII0264 sII0350 sII1268 sII1343
sII1386 sII1712 sII1721 sII1837
sII1979 sIr0038 sIr0039 sIr0073
sIr0082 sIr0232 sIr0294 sIr0476
sIr0765 sIr0784 sIr0821 sIr0886
sIr0921 sIr1282 sIr1338 sIr1406
sIr1821 sIr1926 ssI0242 ssI0294
ssI1046 ssI2009 ssI2874 ssr1480
ssr1528 ssr2130
60-min time lag
hspA psbB,M sIr0709 sIr0816
sIr0907 sIr0915 sIr1066 sIr1068
sIr1070 sIr1071 sIr1072 sIr1073
sIr1396 sIr1410 sIr1964 sIr2010
ssI1792
80-min time lag
hisD ycf46 pxcA rpI24
sIr2115 ssI1045 ycf46

Genes separated by commas indicate that they are located adjacent
to one another in the genome.
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Although a substantial effort is required to plan and perform
this type of experiment, an enormous amount of information is
obtained. This information enables the construction of genetic
networks using the system’s identification technique of time-
lagged correlations. The directionality of the resulting networks
provides more information than clustering alone, and therefore
allows the researcher to generate hypotheses based on the system
structure. Additionally, it is important to consider similarly ex-
pressed genes as potential regulon members. Regulons are sets of
coregulated genes with common promoter regions differing from
operons in that they are not necessarily sequentially oriented in
the genome. To this end, genes with the same time-lagged cor-
relation may be considered as good regulon candidates.

The 50 groups containing 259 genes uncovered by this
analysis technique (Table 1) contained genes that are known to
have light-induced regulation, as well as unannotated genes,
whose functions have yet to be completely assessed. The former
group, containing genes such as apcF, apcE, and apcABC, demon-
strate the reliability of the technique, while the latter group can
help formulate testable hypotheses for a gene’s function. This
suggests that dynamic studies of transcriptional behavior with
significant numbers of time-points can play a key role in under-
standing cellular regulation. As other measurements such as pro-
tein and metabolite data become available at similar scales and
frequencies as DNA microarray data, then time-lagged correla-
tion studies should allow for the creation of hypothetical net-
works similar to Figures 3 and 4 that will contain greater degrees
of mechanistic information. Such approaches will hold new in-
sights into the regulation of Synechocystis and may contribute to
its utilization for carbon fixation at a practical scale.

METHODS

Time-Lagged Correlation
Methodology
To analyze DNA microarray data using time-lagged correlations,
some adjustments were made to the method described by Arkin
et al. (Arkin and Ross 1995; Arkin et al. 1997). Because we are
interested in the transcriptional response to a single perturbation

in the experimental system, the input light
intensity profile was used as a “seed” in the
search for genes with correlated time-lagged
expression profiles. This seed profile con-
sists of the autoscaled light intensity values
at each time point. It is the initial profile to
which the autoscaled dynamic gene tran-
scription profiles are compared to deter-
mine their level of correlation in the first
iteration of the algorithm. The following
steps were then used to perform the net-
work reconstruction effort.

Step 1: Filter Low-Signal Genes and Cluster
Potential Operon Members
Some microarray genes (or features) may
not exhibit significant expression levels un-
der the conditions investigated. Such genes
unnecessarily complicate the computations
and are easily removed by the application of
filters requiring not only significant expres-
sion levels but also significant changes in
expression. Genes that did not have an ex-
perimental signal intensity significantly
above the background variation for at least
half of the time points in a given experi-
ment were excluded from further consider-
ation. Also, all genes without a significant
expression change (defined as a twofold in-

crease or decrease) for at least one time-point were eliminated
from further analysis. In these experiments the filters typically
eliminated approximately 25% of the microarray features from
further consideration.

Because the Synechocystis genome has been sequenced, ad-
ditional information is available about each gene’s chromosomal
location and relative ordering within the genome (http://
www.kazusa.or.jp/cyano/). This information, along with the ex-
perimental expression data, may suggest the existence of oper-
ons, or coexpressed sets of genes due to a common upstream
promoter system. In this algorithm, instead of traditional clus-
tering (Dillon and Goldstein 1984; Kamimura 1997; Eisen et al.
1998; Heyer et al. 1999; Tamayo et al. 1999; Zhu and Zhang
2000), genes that are located adjacent to one another in the ge-
nome were analyzed for correlation of expression with zero time-
lag. Those that correlated, |R(�)| > 0.7, were grouped into clus-
ters. The average autoscaled profile of the gene cluster was cal-
culated to represent the entire group of adjacent genes.

Step 2: Correlate Gene Expression Profiles With the Input Signal
After applying the filters in Step 1, all genes and gene clusters
were subsequently analyzed for their time-lagged correlation
with the input signal. In subsequent iterations, the network can
be expanded by substituting the gene groups from Step 3 for the
input signal used in this step.

Recall that the correlation of equations 1 and 2 comparing
the input signal in the first iteration (or the average profile of a
gene cluster in subsequent iterations), i, to gene j best identifies
relationships of the type

gi�t� = Agj�t − �0� + B (5)

Substituting this relationship into the correlation equations
shows that a maximum Sij value will occur at � = ��0. At this
point Sij = A · �j, where �j is the variance of gj, which corresponds
to rij = 1. Because gene expression is affected by a variety of vari-
ables, some of which are not accounted for, the resulting pair-
wise-correlations will often be less than unity. This suggests that
key genes will possess strong but imperfect correlation with the
input signal. By lowering the threshold values for rij from unity,
such imperfect correlations with appropriate time lags can be
captured. All genes having at least one r(�) value greater than the
preselected cutoff of |R| > 0.7, were set aside for further consid-

Figure 5 Two-dimensional mean-centered Principle Components Analysis of all 74 time points,
using only the 113 genes.

Identifying Genetic Networks From Dynamic Data

Genome Research 1659
www.genome.org



eration. In this way, a set of “first-order” interactions was ob-
tained in a computational time increasing linearly with the num-
ber of genes included.

Using simulations, we found that the determination of
time-lags and correlations is highly dependent on perturbations
in the experimental conditions that lead to measurable changes
in gene transcription. This has also been noted by Arkin and Ross
(1995) who suggest continuous perturbation of the system away
from steady-state to discover the underlying system structure.
Thus, all experiments in our studies were conducted under dy-
namic conditions, with the data collected at homogenously
spaced sampling intervals.

Step 3: Assemble Groups Containing Retained Genes From Step 2
In this step, the retained genes were sorted by their time-lag
correlations with the input signal—all genes that best correlated
with lags of one interval were put into one category, lags of two
intervals into a second category, etc. After grouping the genes
according to their time-lags, a nearest-neighbor (Dillon and
Goldstein 1984) clustering scheme was implemented within each
group using correlation with no time-lag zero as the definition of
similarity. In other words, each gene was compared to all other
genes within each group, and the highest correlated genes were
assembled into sub-groups. This procedure was repeated until the
correlation between groups fell below the preselected cutoff
value, |R| > 0.7 (as in Step 2). In this way we partition the original
time-lagged groups into subgroups based on clustering. The dif-
ference between these subgroups is at least as strong as the dif-
ferences between the correlated and uncorrelated genes found in
Step 2.

Step 4: Expand the Network by Repeating Steps 2 and 3
Each of the discovered groups can be used as a “seed” node in the
same way the input signal (i.e., light intensity) was used in Step
2 to expand the network. In general, the correlation threshold
could be selected to either encourage inclusion of genes into the
network or promote exclusion and focus on “core” interactions.
If the cutoff is chosen too low, however, the network could ex-
pand to include thousands of genes. For our studies, more strin-
gent cutoffs at a value of 0.7 were used to limit the size of the
resulting networks.

Step 5: Create a Graphical Representation of the Network
For small data sets the interaction network may be analyzed and
visualized manually; however, for larger systems this process
needs to be automated. The Graphviz program from ATT Re-
search Labs (http://www.research.att.com/sw/tools/graphviz/)
was adapted for this purpose. This program has been optimized
using heuristics to minimize cross-over events between edges in
order to create easily interpreted output figures. For our purposes,
the output of our analysis software (written in MatLab) has been
written into simple text code that is reinterpreted to create jpeg
images. MatLab functions for automating the creation of such
files from time-lagged correlation analysis have been written for
this purpose and are available from the author, along with the
data sets (http://web.mit.edu/cheme/gnswebpage/index.shtml)
and time-lagged correlation algorithm files.

Experimental Conditions
Synechocystis can grow on a variety of carbon sources including
glucose or CO2. For all of the studies conducted here, cells were
grown solely on dissolved CO2 as HCO3

�. Other medium require-
ments, such as a source of nitrogen and salts, were provided using
BG-11 medium (Sigma), designed specifically to satisfy the nu-
tritional needs of freshwater cyanobacteria. All cultures were
grown in an incubator at 30°C under fluorescent light. Light
intensity in the incubator was determined to be approximately
6900 LUX, or a photosynthetic photon flux (PPF) of about 90
µmol/m2/s at the surface of a culture. This flux is expected to
drop significantly inside of the cultures due to shielding by the
outermost cells; therefore all cultures were continuously shaken
or stirred to ensure homogeneity of light exposure.

Table 2. The Maximum “R” Values and Corresponding Time
Lags for Those Groups Directly Correlated With Light Intensity
in Figure 3

Gene

Expt 1 Expt 2

R_value lag R_value

ycf59 0.7076 �1 0.8459
sII1213 0.6528 �1 0.6282
atpC 0.7104 �2 0.6834

0.6954 �1 0.5538
atpA 0.7621 �1 0.7062
atpD 0.7656 �1 0.6996
atpF 0.7887 �1 0.7376
atpG 0.7923 �1 0.7986
atpH 0.7515 �1 0.726
atpI 0.7174 �1 0.7129
atp1 0.6957 �1 0.6956
ssr2998 0.7368 �1 0.5498
sII0927 0.7577 �1 0.7832
ycf48 0.6153 �1 0.617
psbE 0.773 �1 0.8076
psbF 0.6935 �1 0.7679
psbL 0.7051 �1 0.7225
psbJ 0.6534 �3 0.4751

0.6454 �1 0.4812
sII1070 0.7236 �1 0.5628
sII1069 0.6787 �1 0.5806
acp 0.7625 �1 0.734
pphA 0.737 �1 0.3616
apcA 0.7081 �1 0.7729
apcB 0.7122 �2 0.7714

0.7101 �1 0.7686
apcC 0.7757 �1 0.7301
atpB 0.6959 �1 0.7359
atpE 0.7519 �1 0.7067
sIr1331 0.6175 �1 0.5313
sIr1336 0.7095 �1 0.4099
nbpl 0.7482 �1 0.6761
chIP 0.792 �1 0.8206
psaE 0.7258 �1 0.626
fpg 0.5831 �1 0.4718
sIr0447 0.7872 �1 0.7425
pgk 0.7521 �1 0.7304
sIr0193 0.7216 �1 0.6682
rpiA 0.6194 �1 0.4247
sII0822 0.7776 �1 0.7791
ssI1263 0.7031 �1 0.7185
sIr0967 �0.8524 �1 �0.8587
sII1515 �0.7392 �1 �0.8205
sII1009 �0.7878 �1 �0.273
ssI1911 �0.7832 �1 �0.8907
sIr1232 �0.7922 �1 �0.8773
ssr2078 �0.7062 �1 �0.7272
sIr1712 �0.7016 �1 �0.6647
ssr2227 �0.8571 �1 �0.9117
sIr0822 �0.7292 �1 �0.7255
ssr0692 �0.7791 �1 �0.8701
sIr0581 �0.7666 �1 �0.5221
sIr0582 �0.6686 �1 �0.4439
sIr0518 �0.7619 �1 �0.9146
ssI0832 �0.7446 �1 �0.9486
sIr0587 �0.7757 �1 �0.8677
glnA 0.0744 �1 0.7902
sII1835 0.7433 �1 0.7475
guaA 0.706 �1 0.6698
hemE 0.7058 �1 0.6841
gap2 0.8028 �1 0.7914
sIr1431 0.7106 �1 0.7032
apcF 0.7222 �1 0.7767
argG 0.7397 �1 0.7682
cpcC2 0.6376 �2 0.2069
cpcA 0.7095 �2 0.4941
cpcB 0.7299 �2 0.593

Genes with similar “R” values at different time-lags were placed in
Figure 3 by consensus of the group, and the corresponding “R” values
are also listed.
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Seed cultures were used to inoculate intermediate cultures,
which fed the reactor vessel. Seed cultures were grown in 250-ml
flasks with cotton and gauze caps and contained 100 ml of H2O
that was heat sterilized. Concentrated (50X) BG-11 medium (2
ml) and 0.38 M Na2CO3 (300 µl) were added to the cooled (30°C
maximum) flasks. Intermediate cultures used to inoculate the
larger reactor vessels were grown in 1-L flasks with 300 ml of
H2O. Concentrated (50X) BG-11 (6 ml) and 0.38M Na2CO3 (300
µl) were added to the flasks, along with sterile-filtered 1 M HEPES
(6 ml) to create an environment similar to the sparged reactor
vessel (see below). Approximately 10 ml from a 250-ml seed cul-
ture in late-exponential or stationary phase was used for inocu-
lation of the intermediate cultures. Intermediate cultures were

grown to mid-exponential phase (A730 ∼ 1.0, approximately 4
days) before inoculating the large reactors.

The layout of the sparged-gas vessel is shown in Figure 2. Six
liters of H2O was autoclaved in the 10-L reactor vessel with a
large stir-bar placed in the center of the gas-sparging ring.
Since CO2 was bubbled through this reactor, no Na2CO3 was
added, only BG-11 media (120 ml). Dissolved CO2 gas in the
form of (H+)(HCO3

�) increases the acidity of the culture, drasti-
cally inhibiting growth. To counteract this, 1M HEPES (120 ml)
was added as a pH buffer (pKa = 7.31 at 37°C). The CO2 source
gas (1–3% CO2, ∼16% O2, balance N2) flowed through a sterile
filter into a plastic tubing ring sparger at a rate of about
150ml/min. Sparged gas escaped through a pressure release valve

Table 3. Gene Groups for the Network of Figure 4.
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at the top of the vessel. A final tube, extending deep into the
liquid culture, was sealed with a quick-release and used for sam-
pling.

All experiments were conducted as described in Schmitt Jr.
and Stephanopoulos (2003). The experimental setup and light
intensity profiles are shown in Figure 2. To ensure that the cells
never reached a steady state, the input intensity of light was
changed every 3 h for the first experiment. The three light in-
tensities shown correspond to 0, 16, and 90 µmol/m2/s photo-
synthetic photon flux (PPF). Culture samples were taken in
tubes containing 10% of a phenol (5%) and ethanol (95%) mix-
ture and immediately chilled, but not frozen, in liquid nitrogen.
These samples were centrifuged at 5000 � g for 5 min at 2°C, and
the resulting pellets were stored at �80°C until isolating the
RNA.

To isolate the RNA, pellets were resuspended and processed
according to the Qiaquick (Qiagen) RNA extraction kit, with the
additional step of grinding the cell pellets in a bead mill for 4 min
to break the Synechocystis’ outer cell wall. Typical yields were
10–50 µg of RNA for 50-ml tubes of samples, which is enough to
run between one and four microarrays.

Full-length cDNA microarrays (provided by DuPont Co.
comprising 3078 unique cDNA sequences were used. These
were shipped dry in 384 well (16 � 24) plates (Genetix), resus-
pended with 5 µl of 50% (vol.) DMSO in H2O, and stored at
�80°C until printing. Arrays were printed on a MicroGrid II
quill pin microarrayer (BioRobotics) at 35–45% relative humidity
at room temperature on Corning Gap slides. Sixteen quill
pins were used to print with a 0.29 pitch (290 µm spacing) be-
tween features. The features were printed in 16 grids, each con-
taining 15 rows and 15 columns of cDNA features. While print-
ing, each pin was blotted three times on each of four spare slides
to remove excess liquid from the quills. Then printing was
performed at one tap/slide for each of 104 slides. This entire
procedure was repeated on the bottom half of each slide. The
printing procedure took about 20 h to print the entire cDNA
library in duplicate on 104 slides. Slides were then crosslinked in
batches of 18 slides using a Stratalinker (Stratagene) set to the
“Autocrosslink” option at 1200 µJ, and were stored in the dark
until use.

All RNA samples were processed into labeled cDNA, hy-
bridized to arrays, and scanned as described in Schmitt Jr. and
Stephanopoulos (2003). To summarize the results of that
paper, data from this experiment was used to build AutoRegressive
with eXogeneous input (ARX; Wei 1990; Schmitt Jr. and Stepha-
nopoulos 2003) models to predict the transcriptional out-
come of various potential follow-up experiments. The profile se-
lected as most likely to contain discriminating information
was used as the input light signal for the second experiment,
also shown in Figure 2. Details of this experimental design pro-
cedure are also contained in Schmitt Jr. and Stephanopoulos
(2003).

Microarray quality, sample processing, and data filters were
analyzed in aggregate by hybridizing six samples from cul-
tures grown in parallel and labeled with different dyes to three
microarrays. On average, the expression ratio of 8.8% genes dif-
fered by greater than 1.75, while only 5.1% of genes differed by
more than twofold, consistent with other cDNA microarray ex-
periments. Based on these results, genes were deemed to be dif-
ferentially expressed if they exhibited an expression ratio of two-
fold or greater with respect to the control. A compilation of all
duplicate spots within slides gave a within-slide coefficient of varia-
tion of 0.18.
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