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Gene expression profiles are an increasingly common data source that can yield insights into the functions of cells at
a system-wide level. The present work considers the limitations in information content of gene expression data for
reverse engineering regulatory networks. An in silico genetic regulatory network was constructed for this purpose.
Using the in silico network, a formal identifiability analysis was performed that considered the accuracy with which
the parameters in the network could be estimated using gene expression data and prior structural knowledge (which
transcription factors regulate which genes) as a function of the input perturbation and stochastic gene expression.
The analysis yielded experimentally relevant results. It was observed that, in addition to prior structural knowledge,
prior knowledge of kinetic parameters, particularly mRNA degradation rate constants, was necessary for the
network to be identifiable. Also, with the exception of cases where the noise due to stochastic gene expression was
high, complex perturbations were more favorable for identifying the network than simple ones. Although the results
may be specific to the network considered, the present study provides a framework for posing similar questions in
other systems.

[Supplemental material is available online at www.genome.org. An appendix with the complete model description and
detailed descriptions of some of the methods used are also available online at http://www.dbi.tju.edu/dbi/
publications/icsb2002/].

The present work addresses the coordinated regulation of genes
in response to environmental inputs. We present a novel in silico
model and systems analysis tools useful for this purpose. Mam-
malian cells are constantly remodeling their transcriptional ac-
tivity profiles in response to combinations of inputs. Both the
data and the tools to understand these coordinated responses
have been lacking, as has the means to evaluate whether data or
tools are adequate. The emergence of global gene expression data
sets has begun to provide an appropriate substrate for these ends.
However, the suitability of global gene expression data (in par-
ticular the results commonly available by gene expression pro-
filing experiments) for deriving regulation is not certain. There
are several issues due to the present state of the art such that the
number of observations will always be low and the levels of noise
high. In addition, these data quantity and quality issues will
interact with the nature of the biological system, such that the
ability to infer regulation will depend on the complexity of the
system itself. Finally, new global sources of information that may
be used in conjunction with gene expression data are emerging,
but they must be evaluated to determine which of these are of
value for the analysis goals. This present scenario leads to the
questions: What system knowledge can be derived from gene
expression data alone? How do additional data types influence
the knowledge that can be gained? What analysis methods are
the best for extracting this knowledge?

Several previous works have recognized the advantages of
addressing the above questions in silico. Wessels et al. (2001)
explored several approaches for reverse engineering genetic regu-
latory networks from gene expression data, but they constrained
the complexity of their in silico systems by the reverse engineer-
ing approaches themselves. The studies of Zak et al. (2001a),
Smith et al. (2002, 2003), and Yeung et al. (2002) more closely
paralleled the experimental situation in that their reverse engi-
neering techniques differed from the systems used to generate
the simulation data. Whereas Smith et al. (2002, 2003) used
largely descriptive in silico models, the in silico models of Zak et
al. (2001a) and Yeung et al. (2002) were based on simplified bio-
chemical models of transcriptional regulation. Finally, Michaud
et al. (2003) developed an online tool that allows users to gen-
erate artificial data sets from known networks of arbitrary struc-
ture, but like Smith et al. (2002, 2003), the models are of a de-
scriptive nature. In silico models that are mechanistic in nature
are preferable, as they more closely resemble true biological sys-
tems themselves. The more closely the in silico system resembles
true biology, the greater the likelihood that the results will be
relevant to experimental systems.

The present analysis considers the a priori identifiability and
practical identifiability of a mechanistic regulatory network as a
function of input perturbations and noise due to stochastic gene
expression, given measurements of gene expression and prior
knowledge of the network structure. A priori identifiability is
concerned with whether or not, given a particular model of the
system and a particular input–output experiment, it is possible to
uniquely determine the model parameters in the case of noise-
free data (Jacquez and Greif 1985). Practical identifiability is con-
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cerned with the accuracy with which the parameters in the
model can be estimated given the covariance of the measure-
ments.

We considered input perturbation as an experimental vari-
able because the richness of the perturbation determines the rich-
ness of the dynamic character that may be observed (Ljung
1999), and thus influences model identifiability. This is of prac-
tical importance to the experimentalist, who must decide how to
excite the system of interest in an experiment. In the present
study, we restricted our attention to relatively simple perturba-
tions that may be realized with the present state of the art (step,
pulse, or double pulse of ligand).

Stochastic gene expression is important given that some
components involved in transcriptional regulation are present in
very low numbers in individual cells, such as promoters and tran-
scripts (McAdams and Arkin 1999). It is also of practical impor-
tance, given that single-cell gene expression profiling is a reality
(Hemby et al. 2002), and experimentalists who utilize such tech-
niques will be confronted by stochastic aspects of transcription.
For these reasons, the number of cells collected per time point
was considered as an experimental variable in the present study.
Note that this differs subtly from the number of replicated mea-
surements taken per time point, as it may be feasible to collect
millions of cells per time point whereas it is not feasible to collect
millions of replicate measurements (in the case of cell culture, for
example). When very few cells are collected, as may be the case in
a laser-capture microdissection experiments (Simone et al. 1998),
the noise due to stochastic gene expression will be significant,
whereas the effects will be greatly diminished in studies using
millions of cells per time point.

The prior structural knowledge that was assumed in the pres-
ent study concerns which transcription factors regulate the tran-
scription of which genes, as may be obtained experimentally
from genome-wide location analysis or other methods that iden-
tify protein-DNA interactions on a genomic scale (Pugh and Gil-
mour 2001). The structural knowledge also includes knowing
what transformations the transcription factors undergo, which
may be obtained from the literature (Herdegen and Leah 1998).

The identifiability analyses employed in the present work
were developed specifically for deterministic, ordinary differen-
tial equation (ODE) models, and thus our attention is presently
restricted to ODE systems. The link to the stochastic simulations
is made through the practical identifiability analysis, which, in
the present work, uses an ensemble of stochastic simulations to
estimate the measurement covariance matrix over time. This rep-
resents an idealized scenario, where the variability in the mea-
surements only arises from the stochastic nature of gene expres-
sion, and differs from the present state of the art where measure-
ment noise is significant. Nevertheless, we feel there is value in
exploring what may be possible when measurement noise is suf-
ficiently reduced.

We must point out that in using the stochastic simulations
to estimate the measurement covariance matrix, we make the
subtle assumption that the noise due to the stochastic effects is
essentially additive to an otherwise deterministic time evolution
in mRNA levels. We know that this is not the case, since the
stochastic noise is inherent to the dynamics of transcription, and
this is a limitation in any approach that attempts to construct
ODE models of gene expression. Despite this limitation, numer-
ous ODE models of gene expression have been constructed that
have provided important insights (Hargrove et al. 1991; Gold-
beter 1996; Smolen et al. 1998; Cherry and Adler 2000; De Jong
2002; Isaacs et al. 2003). Additionally, ODE models of gene ex-
pression may be more readily integrated with models of signal
transduction, which are routinely formulated as ODEs
(Kholodenko et al. 1999; Chen et al. 2000). Finally, ODEs are

advantageous because of the availability of numerous analysis
techniques, such as the identifiability analyses employed in the
present work, and analysis tools, such as DASSL/DASPK (Maly
and Petzold 1996), and MATLAB (Shampine and Reichelt 1997).
For these reasons, we feel that the advantages of ODEs outweigh
the shortcomings, and that the implicit assumption in using the
stochastic simulations is an acceptable one. We refer the reader
interested in the much more difficult problem of analysis of sto-
chastic systems to empirical efforts regarding optimizing param-
eters in molecular models (Raimondeau et al. 2003), efforts in
estimating parameters in stochastic differential equation systems
(Nielsen et al. 2000; Fullana and Rossi 2002), and efforts in the
sensitivity analysis of stochastic differential equation systems
(Dacol and Rabitz 1984).

Figure 1 In silico genetic regulatory network. The network consists of
a cascade, a pair of mutually repressive genes, an auto-activation and
sequestration motif, and an agonist-induced receptor down-regulation
motif. (A) When ligand is absent, genes A, E, C, and H are in a “HIGH”
state, indicating maximal levels of their respective transcripts and pro-
teins, whereas genes D, G, K, and J are in a “LOW” state, indicating
minimal levels of their respective transcripts and proteins. In this state
transcripts and protein for gene F are absent. (B) When ligand is present,
genes F, D, G, K, and J are in the HIGH state while genes A, C, E, and H
are in a LOW state. Signed solid arrows indicate transcriptional regulatory
interactions; dashed arrows indicate protein–protein interactions.
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The present work is a departure from previous efforts in that
the analysis of a specific in silico system itself is presented, rather
than a novel reverse engineering approach. Given that our study
considers only one specific network, it may suffer in comparison
to other studies that considered several in silico networks (Wes-
sels et al. 2001; Yeung et al. 2002; Smith et al. 2003). Our network
is, however, of greater mechanistic detail than those considered
in the previous studies. Additionally, the present study lays the
groundwork for both the construction and analysis of other net-
works.

In the following, we present results from simulating the in
silico network in deterministic ODE and novel hybrid stochastic/
deterministic frameworks, followed by the identifiability analysis
results. Details of the model development, simulation, and iden-
tifiability analysis are provided in the Methods section below and
in the online Supplemental material available at www.genome.
org and http://www.dbi.tju.edu/dbi/publications/icsb2002/.

RESULTS

In Silico Genetic Regulatory Network
The genetic regulatory network considered in the present study is
an extension of a network model reported previously (Zak et al.
2001a), and the presentation in the Methods section is the first
full account of the model development. We constructed the in
silico network by arranging modules of transcriptional regulation
into regulatory motifs consisting of groups of two to four genes
interacting through mechanisms drawn from the literature, and
then assembling the motifs into a unified network. Four motifs
were used in the network, described in Methods. The overall
structure was chosen so that, in the absence of ligand input, there
are high levels of transcription factors A and C, protein B, recep-
tor E, and downstream gene H (Fig. 1A). When ligand is intro-
duced, the cell shifts into a state where transcription factors A
and C and receptor E are present at low levels, and transcription
factors D and F and downstream protein J are present at high
levels (Fig. 1B). When ligand is removed, the cell returns to the
initial state. The model parameters were selected to yield time
scales representative of mammalian gene expression (available in
the online Supplemental material). Overall, there are relatively
few (13) interconnections between transcriptional modules, as is
the case in biological networks (Arnone and Davidson 1997;
Jeong et al. 2001; Ravasz et al. 2002).

Simulation Results
We used both ODE and stochastic chemical kinetic (Gillespie
1976) approaches to integrate (simulate) the network. The ODE
approach allowed us to obtain a general sense of the system be-
havior with a small computational investment. The stochastic
approach was used to address the stochastic nature of transcrip-
tion. To remedy the high computational cost of stochastic simu-
lations incurred by the standard stochastic simulation method
(Gillespie 1976), we developed a hybrid stochastic/deterministic
approach that preserved the stochastic nature of gene expression
while speeding up the other reactions with deterministic integra-
tion. Details of this approach are provided in Methods and in the
online Supplemental material.

Log-ratios of gene expression levels are shown in Figure 2A
for the deterministic response of all genes to a pulse of ligand,
where the log-ratio is the natural logarithm of the ratio of ex-
pression level at time t, MI(t), to its level at the initial time, MI0.
Figure 2B demonstrates stochastic effects on the transcript levels
for gene G and on the unrepressed G promoter (PGC), obtained
from the hybrid stochastic/deterministic simulation. Note that C
is a repressor of G, and hence the pulse, causing a decrease in C,

causes an increase in unrepressed G promoter (PGC), and leads to
an increase in G transcript.

The stochastic simulations yielded unexpected results for
the case of an extended step in ligand concentration (Fig. 3).
Deterministic simulations predicted that, despite the agonist-
induced down-regulation of the receptor, prolonged ligand ex-
posure would lead to prolonged down-regulation of gene A (Fig.
3A). Although this was true for some of the stochastic simula-
tions, it was not true for all. A plot of the variances in the tran-
script levels over time calculated from 500 hybrid simulations
demonstrates this further (Fig. 3B). At longer times, the variance
increases due to the increasing number of cells that transiently
adapt to the ligand input.

We confirmed this unexpected behavior by performing
simulations with the full Gillespie algorithm. The behavior arises
from the integer nature mRNA molecules in a single cell. The
transcript for the receptor, ME, at steady state in the presence of

Figure 2 Representative time courses from the model. (A) Loge (ex-
pression ratios) vs. time for all genes (shaded lines) and ligand (dashed
line) from deterministic simulation in response to a pulse of ligand. (B)
Comparison of stochastic and deterministic simulations for the unre-
pressed G promoter (PGC) and the G transcript: PGC and MG vs. time.
Note that the stochastic simulation accounts for the fact that there can
only be 0, 1, or 2 molecules of PGC/cell at any given time.
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ligand will have a concentration of 0.4 molecules/cell in the de-
terministic simulation. This is sufficient for receptor (E) to be
translated, making the EQ complex available to activate tran-
scription of MF and indirectly repress A and C. In the stochastic
simulations, 0.4 molecules/cell becomes 0 molecules/cell for the
majority of the time, during which receptor is not translated,
leading to a significant decrease of receptors/cell compared to the
deterministic simulation. In some cases, the receptor level be-
comes so low that transcription of F is reduced, allowing dere-
pression of A and C. Figures demonstrating this process are pro-
vided in the online Supplemental material.

Identifiability Analysis
We considered three experimentally realizable ligand input per-
turbations in the identifiability analyses: step, single 1-h pulse,
and two 1-h pulses, 1 d apart. Pulses may be realized in batch cell

culture systems by using combinations of receptor agonists and
antagonists with varying affinities. We employed the numerical
method of Jacquez and Greif (1985) to evaluate the a priori iden-
tifiability of the parameters at the nominal parameter values. The
details of these calculations are given in the Methods section,
and the results are shown in Table 1. We observed that the input
perturbation strongly influenced which parameters were a priori
identifiable. For the single step, over half of the parameters could
not be identified from the data. For the single-pulse and double-
pulse studies, approximately one-third of the parameters were
not identifiable. Four of the parameters in the model were insen-
sible for all inputs; that is, they had no effect on the measured
outputs (Jacquez and Perry 1990). These parameters were related
to the translation and degradation of proteins J and H, which did
not feed back into the network. It was observed that a large frac-
tion of the unidentifiable parameters were related to the pro-
cesses of promoter binding/unbinding and transcription factor
dimerization/undimerization. Close analysis indicated that these
sets of parameters were almost perfectly correlated, indicating
that it is possible to reduce the number of parameters in the
model by assuming that the forward and reverse rates of the
promoter binding and dimerization reactions were about equal.
This is known as the equilibrium assumption (Moore and Pear-
son 1981), and amounts to reduction of the model. It was also
observed that some of the unidentifiable parameters were the
mRNA degradation constants. It is becoming increasingly fea-
sible to measure mRNA degradation on a genomic scale (Fan et al.
2002; Wang et al. 2002), and it is therefore a reasonable assump-
tion that this type of data may be acquired experimentally. By
combining the model reduction with mRNA degradation data,
only 1/4 of the original parameters were unidentifiable for the
single-step case, and about 1/9 were unidentifiable for the pulse
cases. In practice, the remaining unidentifiable parameters would
have to be fixed at best estimate values, or the models would
need to be reduced further.

After we determined the set of a priori identifiable param-
eters, we used the Fisher information matrix to determine which
parameters were practically identifiable, following the methods of
Landaw and DiStefano III (1984) and Delforge et al. (1990) (de-
tails in Methods). The fraction of practically identifiable param-
eters for the three inputs as a function of the number of cells
sampled per time point are shown in Figure 4. For all cases, the
double-pulse input had the largest number of practically identi-
fiable parameters. We also considered the influence of the input
perturbation on the type of parameters that were practically
identifiable. Figure 5 shows a plot for all six classes of parameters
for each ligand input as a function of the number of cells
sampled per time point. The double-pulse input clearly allows a
greater variety of parameters to be identified than either of the
other inputs. Interestingly, the single-step input allowed a greater
number of parameters related to promoter binding/unbinding to
be determined, whereas all three inputs were about equal for
determining the transcriptional parameters. Finally, we consid-
ered which signs of transcriptional regulatory interactions could
be identified with 95% confidence. These signs of regulatory in-
teractions correspond to the differences in the transcription rates
for the bound and unbound promoter states. The results are
shown in Figure 6 and were strongly dependent on the number
of cells that were sampled. The impact of stochastic gene expres-
sion was much stronger on the pulse perturbations than the
single-step perturbation, and thus at small cell numbers it was
possible to identify a greater number of transcriptional interac-
tions with 95% confidence than it was for either of the pulse
cases. As the number of sampled cells was increased, however,
the pulse perturbations were superior for determining the signs
of the interactions.

Figure 3 Influence of stochastic gene expression on system behavior.
(A) Deterministic and stochastic time courses for transcript MA during a
step of ligand. The deterministic simulation does not show adaptation
(solid line), whereas some (circles) but not all stochastic simulations
(stars) do. (B) Variance in transcript levels (�2Mi) vs. time for MA, MB, and
MC. Despite constant ligand input, the variance increases for these tran-
scripts at later times due to the transient adaptation of an increasing
fraction of the population.
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DISCUSSION
Here we evaluated the utility of gene expression data and prior
structural knowledge for reverse engineering genetic regulatory
networks, considering the impacts of input perturbation and sto-
chastic gene expression. We developed an in silico genetic regu-
latory network for this purpose, used it to perform deterministic
and hybrid stochastic/deterministic simulations, and performed
an identifiability analysis of it. We obtained results that are of
relevance to the experimental reverse engineering of genetic
regulatory networks.

Our approach to constructing the network by assembling
modules into motifs, and then motifs into the network fits well
with the current literature. With few exceptions (Davidson et al.
2002; Lee et al. 2002; Shen-Orr et al. 2002), most known ex-
amples of transcriptional regulation consist of only a few inter-

acting genes (Almagor and Paigen 1988; Reagan et al. 1993; Al-
berts et al. 1994; Reinitz and Sharp 1995; Meyer and Schmidt
1997; Ouali et al. 1997; Herdegen and Leah 1998; Cherry and
Adler 2000; Gardner et al. 2000; Ramakrishnan et al. 2002). There
are few alternatives for constructing biologically relevant net-
works that contain large numbers of genes other than by assem-
bling several known regulatory motifs. Our approach is further
supported by recent studies of transcriptional regulatory net-
works in Escherichia coli (Shen-Orr et al. 2002) and Saccharomyces
cerevisiae (Lee et al. 2002) in which the authors demonstrated
that these regulatory networks consist of regulatory motifs re-
peated many times. Although the motifs employed in the present
study are generally more complex than the motifs observed in
either of those two studies, their observations do support our
approach.

Recent experimental results (Elowitz et al. 2002; Ozbudak et
al. 2002) have demonstrated that gene expression is a stochastic
process for certain systems. For this reason, the stochastic for-
malism used by many authors (Arkin and McAdams 1998; Mc-
Adams and Arkin 1999; Barkai and Leibler 2000; Zak et al. 2001b;
Gonze et al. 2002; Vilar et al. 2002) is appropriate for modeling
gene expression, although it comes at the cost of increased dif-
ficulty of analysis common to molecular models (Raimondeau et
al. 2003). The results of the stochastic simulations of the present
work, obtained using an efficient hybrid approach, are similar to
other studies that made use of stochastic chemical kinetics to
observe qualitative behaviors that could not be observed with
deterministic simulations (Arkin andMcAdams 1998). Due to the
fact that transcripts can only exist in integer numbers in indi-
vidual cells, a fraction of the simulated cells were able to tran-
siently adapt to constant ligand input. This result also demon-
strates the limitations of ODE models of gene expression. There
is a trade-off between the ease with which ODE systems may be
analyzed, and their inability to address the stochastic nature of
transcription.

The practical identifiability analysis based on the Fisher in-
formation matrix has been applied previously to the yeast cell
cycle (Stelling and Gilles 2001) to investigate the robustness
properties of the system, as well as the importance of including
additional data from perturbed states for estimating model pa-
rameters. Identifiability analysis has also been applied in studies
of ligand binding (Delforge et al. 1990) and water treatment (Pe-
tersen et al. 2001) to investigate how additional perturbations or
measurements improve the accuracy of parameter estimates. Our
application of identifiability analysis to the reverse engineering
of genetic regulatory networks is consistent with these previous
studies in that we directly investigated how the complexity of the
perturbation influences how well the genetic regulatory network

Table 1. A Priori Unidentifiable Parameters Grouped by Biological Function, for the Three Perturbations

Biological function (total params.) Single step Single pulse Double pulse

Protein monomer degradation (10) 8 (6)a 4 (2)a 4 (2)a

Transcript degradation (10) 7 5 5
Translation (10) 9 (7)a 5 (3)a 6 (4)a

Unidimerization and dimer deg. (21) 13 (6)b 10 (3)b 11 (4)b

Promoter un/binding (20) 12 (2)b 13 (3)b 13 (3)b

Transcription (26) 2 0 0
Total (97) 51 (30)c (23)d 37 (16)c (11)d 39 (18)c (13)d

aThe number of unidentifiable parameters that would remain if the insensible parameters (see text) were removed from the model.
bThe number of unidentifiable parameters that would remain if the equilibrium approximation was made for the appropriate parameters.
cThe total remaining unidentifiable parameters if the insensible parameters were removed and the equilibrium assumption was applied where
appropriate.
dThe total remaining unidentifiable parameters if mRNA half-lives were measured in addition to application of the equilibrium assumption and
removal of insensible parameters.

Figure 4 Fraction of practically identifiable parameters (see Methods
section for definition) vs. the number of cells sampled per time point
(Ncells) for the three input perturbations. When only a few cells are
sampled per time point, the effect of stochastic gene expression is the
greatest, and each perturbation allows about the same number of pa-
rameters to be identified with statistical confidence. As more cells are
sampled per time point, the noise is reduced and the double-pulse per-
turbation performs the best. When a very large number of cells are
sampled, greatly reducing the impact of stochastic gene expression, the
single pulse performs as well as or slightly better than the double pulse.
The slight advantage of the single pulse in this limit is due to the slightly
greater number of parameters that are a priori identifiable with that
perturbation (Table 1).
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may be reverse engineered. In addition, we considered how sto-
chastic gene expression interacts with the complexity of pertur-
bations in the context of reverse engineering genetic regulatory
networks.

In the present study, prior knowledge of the model param-
eters was required to perform the identifiability analyses. In an
experimental situation, the parameter values will not be known
a priori, and the identifiability analyses will instead play a role in
an iterative process involving experimental design and param-
eter estimation. The first step in the iteration is the collection of
nominal values for the parameters, which may be used to design
experiments that render the parameters practically identifiable. If
this is not possible, it may be necessary to reduce the number of
parameters in the model. The new experiment is carried out, and
new parameter values are estimated using the experimental data.
The identifiability analyses are then performed to determine
whether the parameters were a priori and practically identifiable.
If they were not, the experimentalist must design another experi-
ment that will render them identifiable, and complete iterations
until a practically identifiable parameter set is obtained.

The results of the present study may be translated into
guidelines for the experimentalist who is interested in reverse
engineering genetic regulatory networks from gene expression
data. Even though we assumed prior structural knowledge of the
network, all of the parameters were not a priori identifiable. This
implies that without structural knowledge, attempts to identify
genetic regulatory networks will meet with limited success. This
result is consistent with our previous observations (Zak et al.
2001a). Structural knowledge, as may be obtained from genome-
wide protein-DNA binding assays (Pugh and Gilmour 2001), pro-

moter bioinformatics (Tavazoie et al. 1999), and literature infor-
mation (Herdegen and Leah 1998) is critical to the reverse engi-
neering of genetic regulatory networks. The a priori
identifiability analysis also showed that, for any of the input
perturbations, a large number of parameters were unidentifiable,
even in the case of perfect data. An effort must be made to obtain
prior estimates of key parameters, such as mRNA degradation
constants (Fan et al. 2002; Wang et al. 2002), and to avoid over-
parameterization of the models, by using model reduction ap-
proaches such as the equilibrium assumption (Moore and Pear-
son 1981). Finally, the number of cells that are collected per time
point in an experiment will influence the type of perturbation
that will be most informative and the amount of prior knowledge
that will be necessary for network identification. For situations
where only a few cells are collected per time point, as in laser-
capture microdissection experiments (Simone et al. 1998), the
impact of stochastic gene expression will be significant, and
simple perturbations with prior knowledge of many key param-
eters will be favorable. When hundreds or millions of cells may
be collected per time point, the impact of stochastic gene expres-
sion will be small and the reverse engineering will be favored by
complex input perturbations.

Our study considered how input perturbations and stochas-
tic gene expression influence the identifiability of a specific regu-
latory network given gene expression profiles and prior structural
knowledge. This work may be expanded by including additional
sources of variability, such as measurement noise, by including
additional data types that may be available, such as functional
protein levels, and by varying network structure (Smith et al.
2003). Additionally, the effort may be coupled with specific re-

Figure 5 Fraction of practically identifiable parameters (see Methods for definition) by biological function vs. the number of cells sampled per time
point (Ncells) for the three input perturbations: For protein degradation and translation parameters, the different perturbations perform about equally
well when Ncells is small (high noise), with the double pulse being superior at intermediate Ncells, and the double and single pulses performing about
equally well at very high Ncells. For mRNA degradation, dimerization, undimerization, dimer degradation, promoter binding, and unbinding, both pulse
perturbations perform about equally well. Interestingly, the step perturbation is more effective for identifying promoter binding and unbinding
parameters. All three perturbations perform about equally well for the transcriptional parameters. The differing effectiveness for the perturbations for
the different classes of parameters may result from their tendency to excite different time scales in the system.
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verse engineering techniques, as the performance of different
methods may vary from system to system. The present study lays
the groundwork for these future efforts, and we invite other in-
vestigators to use our model for this purpose and to participate in
the further development of these concepts.

METHODS

In Silico Genetic Regulatory Network
In our modular approach to network construction, modules of
transcriptional regulation were arranged into regulatory motifs
consisting of groups of two to four genes interacting through
mechanisms drawn from the literature. The overall network was
then constructed by assembling the motifs into a network.

The structure of the transcriptional regulatory module,
based on that used by Barkai and Leibler (2000), is shown in
Figure 7. We extended the original module to allow homodimer-
ization-dependent activation of transcription factors and bind-
ing of multiple transcription factors to promoters.

The regulatory motifs used in the network were as follows:

1. Cascade: The cascade is a unidirectional flow of activating or
repressing interactions. Cascades in transcriptional regulation
are well established in development. In Drosophila, for ex-
ample, it is known that the gap genes regulate eve expression,
but eve does not regulate the gap genes (Reinitz and Sharp
1995). Genes C, G, H, J, and K were arranged in a cascade in
the present network.

2. Mutual repression: The mutual repression motif is a pair of mu-
tually repressive genes or switch. Mutual repression motifs
have been observed in prokaryotes (�-phage, Alberts et al.
1994) and eukaryotes (Reinitz and Sharp 1995), synthesized
artificially (Gardner et al. 2000), and studied mathematically
(Cherry and Adler 2000). Genes C and D are mutually repres-
sive in the present network.

3. Auto-activation and sequestration: The auto-activation and se-
questration motif is based on the observation that the dimer-

ization partners of transcription factors determine how they
regulate the transcription of target genes (Alberts et al. 1994).
An example of auto-activation and sequestration is given by
c-jun and Fra-2, where c-jun activates of transcription of c-jun
and Fra-2 as a homodimer (or with c-fos) but not when it is
sequestered as a heterodimer with Fra-2 (Herdegen and Leah
1998). Genes A and B interact via this motif in the present
network.

4. Agonist-induced receptor down-regulation: In the agonist-
induced receptor down-regulation motif, a ligand forms a
complex with its receptor, which then diffuses into the
nucleus. Once inside the nucleus the complex binds to and
activates the expression of specific genes, which ultimately
lead to the down-regulation of the receptor itself. This mecha-
nism, in which receptor binding ultimately leads to receptor
down-regulation, is well documented in mammalian systems
(Meyer and Schmidt 1997; Ouali et al. 1997). Genes E, F, and
Dmake up the agonist-induced receptor down-regulation mo-
tif in the present network.

Parameters
The total system consists of 118 reactions with 44 species and 97
parameters. The parameters include protein monomer degrada-
tion (10 parameters), transcript degradation (10 parameters),
translation (10 parameters), dimerization/undimerization/dimer
degradation (21 parameters), promoter binding/unbinding (20
parameters), and transcription (26 parameters).

Assignment of mean values to all of the genes would be
unrealistic, because variations greater than 100-fold for transcrip-
tion rates, mRNA turnover, and protein turnover are known to
exist in mammalian systems (Hargrove 1994). Our approach was
to assign the rate constants based on literature values for genes
and proteins with roles similar to those in the model network.

Genes A, B, C, D, F, G, and K encode for transcription factors
and were therefore assigned rate constants based on the tran-
scription factors c-jun and Fra-2 in the mammalian nervous sys-
tem (Herdegen and Leah 1998). Gene E encodes a receptor and
was therefore assigned kinetics of a G-protein coupled receptor
(AT1 in bovine adrenocortical cells [BACs], Ouali et al. 1997).
Genes H and J are downstream genes and were given the kinetics
of metabolic enzymes (H, alanine aminotransferase [AAT]; J, ty-
rosine aminotransferase [TAT]) with rate parameters derived
from studies using rat liver (Kenney and Lee 1982). Not all of the
required parameters could be assigned values based on the litera-
ture, and further approximations were necessary. A description of
the steps taken in deriving the parameter values can be down-
loaded from the Supplemental information Web site.

The model definition in the Systems Biology Markup Lan-
guage format (SBML, http://www.sbw-sbml.org/), a table con-
taining all of the parameter values, and a description of the steps
taken in deriving the parameter values can be downloaded from
the Supplemental information Web site.

Figure 6 Fraction of practically identifiable (see Methods for definition)
transcriptional interactions (differences between bound and unbound
transcriptional parameters) vs. the number of cells sampled per time
point (Ncells) for the three input perturbations. At low values of Ncells,
corresponding to a large impact of stochastic gene expression, the single-
step perturbation actually allows the greatest number of transcriptional
regulatory interactions to be determined with 95% confidence. As the
number of sampled cells is increased, however, the double-pulse pertur-
bation becomes more effective for determining the regulatory interac-
tions. This result differs from the previous (Figs. 4,5) in that it demon-
strates a trade-off between the richness of the perturbation and sensitivity
to the effects of stochastic gene expression.

Figure 7 Transcriptional regulatory module. Transcription factor dimer
J2 bind to the promoter, PIJ of gene I, influencing the rate of MI transcrip-
tion. MI is translated into protein I, which dimerizes and then binds to
other promoters. Solid arrows indicate irreversible reactions (transcription
and translation), dashed arrows indicate reversible promoter binding re-
actions.
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Simulating the Network

Deterministic Approach
For deterministic simulations, the transcriptional regulatory
module was cast as a set of ODEs, given below for hypothetical
gene I. All rate constants are indicated by k and were taken as
constants in the simulations. Values of the various ks for specific
genes can be found in the online Supplemental information.

Binding and unbinding of transcription factors (TFs; e.g., J2)
to promoters (PIJ) to form TF-promoter complexes were described
by:

�P
.
IJ� = − kPIJ

�PIJ� �J2� + kUPIJ
�J2PIJ� ( 1 )

Translation was modeled as a first-order process with rate con-
stant kTI. Dimerization and undimerization for the formation of
active transcription factor (I2) followed simple mass action kinet-
ics. Dimer concentrations are also affected by all of the promoter
binding (�PB) and unbinding reactions (�PU) in which they par-
ticipate. The ODEs used for proteins and dimers were:

�I
.
� = kTI�MI� − 2kI2�I�

2 + 2kUI2�I2� − kdI�I� ( 2 )

�I
.
2� = kI2�I�

2 − kUI2�I2� − kdI2�I2� − �PB + �PU

In the present model, the overall transcription rate was a linear
sum of the transcription rates for the bound (kRJPIJ) and unbound
(kRPIJ) promoter states, giving an ODE for the I transcript (MI) as
follows:

�M
.
I� = kRPIJ

�PIJ� + kRJPIJ
�J2PIJ� − kdMI�MI� ( 3 )

In the case of promoters where more than one transcription fac-
tor can bind, the ODE was:

�M
.
I� = kR1�PI1� + kR2�PI2� + ��� + kRN�PIN� + − kdMI�MI� ( 4 )

where kRN is the transcription rate associated with promoter state
PIN. For the case where two TFs bind to the promoter, there will
be four transcriptional rates (no TFs bound, TF-A bound, TF-B
bound, and both TF-A and TF-B bound).

The MATLAB (The Mathworks) function ode15s (Shampine
and Reichelt 1997) was used to carry out the numerical integra-
tion in the present study.

Hybrid Stochastic/Deterministic Approach
In our hybrid approach, a stochastic integrator (Gillespie 1976)
was coupled with a deterministic integrator (implicit Euler;
Heath 1997). The stochastic integrator was used for the compo-
nents present in small numbers (promoters and transcripts), and
the deterministic integrator was used for components present in
large numbers (proteins, transcription factor dimers), thereby
breaking the transcriptional module into stochastic and deter-
ministic subsystems (Fig. 8). We also assumed that promoter
binding and unbinding reactions did not significantly influence

the concentration of transcription factor dimers (J2). This as-
sumption removes the �PB and �PU terms from Equation 2, and
had a small effect on the results. We observed a speedup greater
than 500-fold over the full stochastic simulation when this ap-
proach was implemented on the genetic regulatory network
model. It is difficult to quantify precisely the error introduced by
the hybrid stochastic/deterministic approximation, but there are
indications that it is small for this system. For the Barkai and
Leibler (2000) circadian rhythm model, it was observed that
noise characteristics for the hybrid simulation matched those of
the full stochastic simulation very closely, indicating that little
error was introduced. The hybrid stochastic/deterministic simu-
lation algorithm is described further in the online Supplemental
material).

Identifiability Analysis
The numerical method for checking a priori identifiability, based
on that given by Jacquez and Greif (1985), was as follows.

The system is expressed as a set of Nx differential equations
with Nx states (x) and Np parameters (p):

ẋ = f( x,p ) ( 5 )

The set of Ny measured states (y) was selected from x with the Ny
by Nx matrix C:

y = Cx ( 6 )

The Nx by Np sensitivity matrix S was calculated (Khalil 1992):

S
.
( t� = A ( t,p0) S�t� + B ( t,p0 ) ( 7 )

where:

Sij ≡ ��xi

�pj
�
x= x( t,p0) ,p= p0

A ( t,p0) = � �f
�x�x = x ( t,p0�,p= p0

( 8 )

B( t,p0) = � �f
�p�x= x( t,p0) ,p= p0

The Ny by Np sensitivity matrix Sy of the measured states was
then calculated:

Sy = CS ( 9 )

Finally the correlation matrix of the parameters (Mc) was calcu-
lated:

Mc = correlation ( G ) ( 10 )
where:

G = �
Sy �t1�

Sy �t2�

�

Sy �tN�
� ( 11 )

Parameters that are locally identifiable have correlations with all
others parameters between �1 and 1. Parameters that are not
locally identifiable, termed a priori unidentifiable in the present
work, have correlations of exactly +1 or �1 with at least one
other parameter. These parameters influence the measured vari-
ables in exactly the same or exactly the opposite manner. The
original parameter set, p can be reduced to the identifiable pa-
rameter set, pI, of length NI, by calculating Mc, removing one
unidentifiable parameter, recalculating Mc, removing another
unidentifiable parameter, etc., until no more unidentifiable pa-
rameters remain.

Given the set of identifiable parameters, the covariance of
the measurements over time, and assuming that the measure-
ments have Gaussian distributions, it is possible to estimate
lower bounds on the variances of the parameter estimates

Figure 8 Stochastic and deterministic subsystems in the transcriptional
module. The stochastic subsystem consists of those states typically pre-
sent in small numbers, such as promoters (PIJ, J2PIJ, PKI, I2PKI) and tran-
scripts (MI). The deterministic subsystem consists of those components
typically present in larger numbers, such as proteins (I) and dimers (J2, I2).
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through use of the Fisher information matrix (FIM; Landaw and
DiStefano III 1984). The Gaussian assumption for the measure-
ments does not hold under all conditions for gene expression.
When transcript levels are not close to zero, the Gaussian as-
sumption is acceptable. When transcript levels are near zero,
however, the distribution is distinctly non-Gaussian, because the
transcript levels cannot take negative values. Representative re-
sults for the system are given in the online Supplemental infor-
mation. Despite this, we used FIM�1 to estimate the variances of
the parameter estimates, to obtain a first-order estimate of the
parameter estimation accuracies. FIM was calculated from:

FIM = �
i = 1

N

SI
T�ti�W

− 1�ti�SI�ti� ( 12 )

where SI is the Ny by NI sensitivity matrix of the measured states
to the identifiable parameters, and W is the covariance of the
measurements. The covariance was estimated by using an en-
semble of 500 hybrid stochastic/deterministic simulation runs.
For the case where only one cell was sampled per time point, the
covariance in the mRNA measurements was directly calculated
from the 500 hybrid runs. For the case where 10 cells were
sampled from each time point, the covariance in the measure-
ments was obtained from the averages of 10 runs, sampled ran-
domly from the pool of 500 runs, 500 times. From these covari-
ances, it was possible to extrapolate the effect that samplingmore
cells had on the covariance in the mRNA levels.

From FIM the lower bounds on the variances of the param-
eter estimates were obtained (Landaw and DiStefano III 1984;
Petersen et al. 2001) by:

�pi
2 � �FIM − 1 �p��ii ( 13 )

From the variances of the parameter estimates, confidence inter-
vals for the parameter values were calculated. In the limit of a
large number of measurements, the 95% confidence interval for
the parameters is: [p0 � 1.96�p, p

0 + 1.96�p] (Delforge et al.
1990), where p0 is the nominal value of the parameter, and �p is
the standard deviation of its estimate. Practically unidentifiable
parameters were defined as those for which it was not possible to
determine with 95% confidence that their values were non-zero.

Variances in quantities derived from the parameters, such as
the difference between two parameters, were obtained from the
relation (Landaw and DiStefano III 1984):

�g�p�
2 = ��g��p�T FIM − 1 ��g��p) ( 14 )

where g(p) is the quantity to be estimated and FIM�1 has been
substituted for the covariance matrix of the parameters.

It must be noted that estimation of �pi
2 requires inversion of

FIM, and thus problems arise when FIM is singular. A singular
FIM indicates the presence of unidentifiable parameters, and cor-
relations between parameters that are greater than 0.99 may lead
to singular FIM (Landaw and DiStefano III 1984). For this reason,
the procedure for obtaining a subset of identifiable parameters
was modified so that parameters are removed until somemeasure
of the singularity of FIM is above a threshold. In the present
study, the LAPACK reciprocal condition estimator in MATLAB
(The MathWorks), rcond was used to determine whether FIM was
singular. If rcond(FIM) < 10�, where � is the floating point rela-
tive accuracy (2.2 * 10�16), FIM was taken to be singular.
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