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ABSTRACT

G-protein coupled receptors (GPCRs) belong to one
of the largest superfamiliesofmembraneproteinsand
are important targets for drug design. In this study,
a support vector machine (SVM)-based method,
GPCRpred, has been developed for predicting
families and subfamilies of GPCRs from the dipeptide
composition of proteins. The dataset used in this
study for training and testing was obtained from
http://www.soe.ucsc.edu/research/compbio/gpcr/. The
method classified GPCRs and non-GPCRs with an
accuracy of 99.5% when evaluated using 5-fold
cross-validation. Themethod is further able to predict
fivemajorclassesor familiesofGPCRswithanoverall
Matthew’s correlation coefficient (MCC) andaccuracy
of 0.81and97.5%respectively. In recognizing thesub-
families of the rhodopsin-like family, the method
achieved an average MCC and accuracy of 0.97 and
97.3%respectively.Themethodachievedoverallaccu-
racy of 91.3% and 96.4% at family and subfamily level
respectivelywhen evaluated on an independent/blind
dataset of 650 GPCRs. A server for recognition and
classification of GPCRs based on multiclass SVMs
has been set up at http://www.imtech.res.in/raghava/
gpcrpred/.We have also suggested subfamilies for 42
sequences which were previously identified as
unclassified ClassA GPCRs. The supplementary in-
formation is available at http://www.imtech.res.in/
raghava/gpcrpred/info.html.

INTRODUCTION

G-protein coupled receptors (GPCRs) constitute a vast family
of cell surface receptor proteins that are central to the signaling
network which regulates the basic cellular processes (1).

GPCRs consist of a single polypeptide that crosses the mem-
brane seven times (2). The N-terminal of these proteins is
located extracellularly and the C-terminal extended in the
cytoplasm. This arrangement makes these proteins capable
of transducing an extracellular signal into the cell via a
guanine binding protein (G-protein) (3). This signal is crucial
for the regulation of a large number of metabolic processes
such as neurotransmission, hormonal secretion, cellular differ-
entiation and metabolism (4). Therefore, structural and func-
tional annotation of these proteins is useful in understanding
the processes of signal transduction. Owing to their crucial
role in signal transduction, these proteins are potential drug
targets. At present more than 50% of drugs available on the
market act through GPCRs. The three-dimensional structures
of GPCRs are largely unsolved, except for that of one GPCR
(bovine rhodopsin). In contrast, the amino acid sequences of
more than 1000 GPCR-related proteins are known (5). Cur-
rently known GPCRs include the rhodopsin-like family, the
secretin-like receptor family, the metamorphic glutamate
receptor-like family, the fungal pheromones mating factor
families and cAMP-type receptors (3). The rhodopsin-like
family of GPCRs is made up of 15 major subfamilies and
more than 60 types of receptor. These receptors bind to diverse
ligands and evoke different effector systems. Owing to the
enormous amount of data on, and the paramount importance
of, GPCRs, an automated computational method for their clas-
sification is of great practical use.

In the past, a number of strategies have been used to search
for novel GPCRs in protein sequence data. These strategies
have involved similarity searches using primary database
search tools (e.g. BLAST, FASTA) and such database searches
coupled with searches of pattern databases (PRINTS) (6).
However, these methods fail when query proteins lack sig-
nificant sequence similarity to the database sequences. In order
to overcome these limitations, a support vector machine
(SVM)-based method was developed by Karchin et al. (5).
This method is better at classifying the subfamilies of GPCRs
than simple BLAST or hidden markov model (HMM)-based
methods. Another method for classification of eukaryotic
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GPCRs has been designed based on their membrane spanning
topology (7).

This paper describes a support vector machine-based
method, GPCRpred, developed for annotating GPCRs on
the basis of dipeptide composition. The method uses a
three-step approach for annotating GPCRs: (i) it predicts
whether the query sequence belongs to the GPCR superfamily
or not; (ii) it predicts the class or family of GPCR; and (iii) it
predicts the GPCR subfamily if it belongs to Class A of
GPCRs. The performance of our method and existing methods
was also evaluated on an independent/blind dataset created in
this study. Based on the above approach, an online web tool
has been developed, which is available at http://www.imtech.
res.in/raghava/gpcrpred/.

METHOD

In this study, we have adopted a three-step strategy for recog-
nizing GPCRs from protein sequences and further classifying
GPCRs to subfamily level, as shown in Figure 1. The method
was trained using fixed-length vectors obtained on the basis of
the dipeptide composition of proteins. The accuracy of each
step was evaluated using cross-validation. The source of data
and strategy used in the development of each module of this
method are briefly discussed below.

Recognition of a GPCR

Initially, we developed an SVM module for identifying
GPCRs from protein sequence data uncovered by various
genome-sequencing projects. The dataset, obtained from
http://www.soe.ucsc.edu/research/compbio/gpcr/ (5), consisted
of 778 GPCRs belonging to the five major classes of GPCR.
This dataset was originally derived from GPCRDB (2). The
same dataset was used by Karchin et al. for devising a
method for the prediction of GPCR subfamilies (5). The
dataset was extended by adding 99 decoy negative examples
and 2425 additional negative examples obtained from SCOP
version 1.37 PDB90 domain data (5,8). The performance of
the module was evaluated using a 5-fold cross-validation test.
The SVM was trained with a fixed-dimensions vector (400)
obtained on the basis of the dipeptide composition of protein
sequences.

Recognition of GPCR class

GPCRs can be divided into five major classes: Class A (recep-
tors related to rhodopsin and andrenergic receptors), Class B
[receptors related to calcitonin and parathyroid hormone
(PTH) receptors], Class C (receptors related to metabotropic
receptors), Class D (receptors related to pheromone receptors)
and Class E (receptors related to cAMP receptors) (5). The
dataset for these five classes was obtained from the work of
Karchin et al., (5). The dataset consisted of 692 sequences from
Class A, 56 sequences from Class B, 16 sequences from Class
C, 11 sequences from Class D and 3 sequences from Class E.
Classification of GPCRs into one of the five classes is a multi-
class classification problem. For five-class classification, five
SVMs were constructed, each specific to one class. The i-th
SVM was trained with all the samples of the i-th class with
positive labels and samples from the remainder of the classes
with negative labels. For example, the SVM for Class A was
trained with all Class A sequences with positive labels and the
sequences from the other classes (B–E) with negative labels.
An unknown GPCR will be classified into the class that corres-
ponds to the SVM with the highest output. The SVM was
constructed using the dipeptide composition of proteins. The
performance of each SVM was evaluated using 2-fold cross-
validation. This 2-fold cross-validation was used because of
the lesser number of sequences for Classes D and E.

Non-redundant Dataset

The use of a non-redundant dataset for testing and training is
common practice in the development of computational
methods to avoid overtraining. Therefore, we generated
a non-redundant dataset from the original dataset using
PROSET software (9). In the non-redundant dataset, no
two sequences had >90% identity. Two SVM modules were
constructed at this level, one using the original dataset and the
other using the non-redundant dataset.

GPCR subfamily recognition

To predict the subfamily of receptors belonging to the Class A
or rhodopsin-like family of GPCRs, we constructed an SVM-
based module. Class A was considered because it covers more
than 80% of sequences in the GPCRDB database. The Class A
family of GPCRs consists of 15 major subfamilies, such
as amine, peptide and rhodopsin. The data for all these

Figure 1. Diagrammatic view of the three-step strategy used to predict the
subfamilies of GPCRs.
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subfamilies were extracted from the work of Karchin et al. (5).
The number of sequences in the different subfamilies of
ClassA is provided in Table_sup 3 of the SupplementaryMate-
rial. The classification of an unknown GPCR into a particular
subfamily is a multiclass problem. We constructed K binary
SVM classifiers for K subfamily classifications. The
i-th SVM was trained using all sequences of the i-th subfamily
with positive labels and the sequences from the other sub-
families with negative labels. SVMs trained in this way are
referred to as ‘one-versus-rest’ SVMs (10). The performance of
all one-versus-rest SVMs was evaluated using 2-fold cross-
validation. An unknown GPCR will be classified into the sub-
family that corresponds to the one-versus-rest SVM with the
highest output.

Support vector machine

The SVM was implemented using the freely downloadable
software package SVM_light written by Joachims (11). The
software enables the user to define a number of parameters as
well as to select from a choice of inbuilt kernel func-
tions, including a radial basis function (RBF) and a polynomial
kernel (of given degree). All the kernel parameters were kept
constant except for regulatory parameter C. The experimenta-
tion was conducted using various types of kernel such
as polynomial and RBF. The SVM was provided with
fixed-length vector input. The fixed-length feature vector
was obtained from proteins of variable length using dipeptide
composition.

Dipeptide composition

Thedipeptidecompositionusedasinputprovidesglobal informa-
tion on protein features in the form of a fixed-length vector. Di-
peptidecompositionencapsulatesinformationaboutthefraction
of amino acids as well as their local order. The dipeptide com-
position of each protein was calculated using Equation 1.

Fraction of dep ið Þ = Total number of dep ið Þ
Total number all possible dipeptides

, 1

where dep(i) is a dipeptide i out of 400 dipeptides.
In this study, 20 SVMs were constructed in total: one for

discriminating GPCR proteins from other proteins such as
globular proteins, five for predicting the class or family of
GPCRs and the remainder for recognizing the subfamily of
a GPCR that belongs to Class A.

Independent or blind dataset

In this study, an independent/blind dataset was created for
unbiased evaluation of this as well as existing methods (5).
GPCR sequences were derived from release 8.0 of GPCRDB
(2). All sequences previously used by our methods and exist-
ing methods for training or testing were removed from the
dataset. All proteins denoted as ‘fragment’ or whose annota-
tion was listed as ‘hypothetical’, ‘similar’ or ‘putative’ were
also removed from the dataset. The final dataset comprises 650
proteins belonging to five major classes of GPCRs, as shown in
Table 4. The dataset had 431 sequences of Class A belonging
to 10 major subfamilies (Table 5).

Performance evaluation

The performance of SVM in distinguishing GPCRs from non-
GPCRs was evaluated using 5-fold cross-validation. In the
5-fold cross-validation, the dataset was partitioned randomly
into five equal-sized sets. The training and testing of each
classifier was carried out five times using one distinct set
for testing and other four sets for training. Four threshold-
dependent parameters—sensitivity, specificity, accuracy and
Matthews’s correlation coefficient (MCC)—were used to
measure the performance of this module. The performance
of SVM modules constructed for recognizing GPCR class
and subfamily was evaluated using 2-fold cross-validation
because of the lower number of sequences. In the 2-fold
cross-validation, the dataset was randomly partitioned into
two equal sets. The training and testing of each SVM was
carried out twice using one set for training and the other
set for testing. The performance of these modules was meas-
ured using two parameters, accuracy and MCC, as described
by Hau and Sun (2001) for prediction of a protein’s subcellular
localization (10).

RESULT AND DISCUSSION

The three-step strategy used for the development of our
method is shown in Figure 1. The input for all SVMs is a
fixed-length vector obtained using dipeptide composition from
the primary amino acid sequence. The performance of each
SVM module was validated using a cross-validation test.

The performance of the module developed for discriminat-
ing between GPCRs and other protein sequences is summar-
ized in Table 1. The results depict that the method can
differentiate GPCRs from other proteins with an accuracy
of 99.5% and an MCC of 0.99 at a default cutoff score of
0, when evaluated through 5-fold cross-validation. The best
results were obtained using the RBF kernel with g = 200. The
value of regulatory parameter C was optimized to 100.
Another SVM-based module was developed using 2872 negat-
ive protein sequences with 778 GPCR sequences. These 2872
protein sequences were retrieved from the EVA server
(http://cubic.boic.coulmbia.edu/eva/res/week.html#unique) on
November 25, 2002. The performance of the module devel-
oped using the EVA dataset is shown in Table_sup1 (see

Table 1. The performance of our method in differentiating GPCRs from

non-GPCRs

Threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC

�1.0 99.9 87.8 90.6 0.74
�0.8 99.9 94.0 95.4 0.89
�0.6 99.8 97.1 97.8 0.94
�0.4 99.3 98.8 98.9 0.97
�0.2 99.2 99.5 99.5 0.99
0.0 98.6 99.8 99.5 0.99
0.2 96.5 99.9 99.0 0.98
0.4 93.3 100.0 98.4 0.95
0.6 86.4 100.0 96.8 0.91
0.8 74.8 100.0 94.0 0.83
1.0 53.3 100.0 88.9 0.67

The highlighted region specifies the performance of the method at the default
threshold.
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Supplementary Material). The performance of this module is
very close to the performance of the SVM module developed
using the dataset suggested by Karchin et al. (5). The results
demonstrated that GPCRs and non-GPCRs can be classified
with high accuracy using dipeptide composition as the
sequence feature.

The performance of the dipeptide composition-based
module was compared with that of an amino acid compo-
sition-based module developed on the same dataset. The per-
formance of the amino acid composition-based module is
shown in Table_sup2 (http://www.imtech.res.in/raghava/
info.html). The module was able to discriminate between
GPCRs and non-GPCRs with an accuracy of 96.5% at the
default cutoff score, which was lower than that of the dipeptide
composition-based module. This proves that dipeptide com-
position is a better feature for recognizing GPCRs from
protein sequence data. These results support our previous
observation that dipeptide composition is a better feature
for predicting the subcellular localization of proteins (12).
The performance of the dipeptide composition-based module
was also compared with a similarity search-based tool
(BLAST). In the case of BLAST (at an E-value cutoff of
10�10) during 5-fold cross-validation no significant hit was
obtained for 102 GPCR proteins out of 778 proteins. The
accuracy and MCC of the BLAST-based module were
86.5% and 0.91, which were significantly lower than the fig-
ures for the dipeptide composition SVM-based module. These
observations suggest that it is worth using the computationally
expensive SVM-based tools to recognize GPCRs from the
genomic data produced through ongoing sequencing projects
such as Human Genome.

To predict the class or family of GPCRs, a series of binary
SVMs were constructed. The SVMs were trained and tested
using dipeptide compositions through 2-fold cross-validation.
The performance of the SVMs in recognizing the classes or
families of GPCRs is summarized in Table 2. The results show
that the SVM-based method is able to discriminate between all
the classes with more than 80% accuracy, except Class D. Poor
results were obtained for Class D owing to the lower number of
sequences for training. It is a well-established fact that learn-
ing techniques require a large number of examples for reliable
prediction. The overall accuracy and MCC of this module for
predicting the five GPCR classes were 97.3% and 0.81 respec-
tively. In order to examine the effect of similar sequences in
the dataset on the performance of the method, the performance
of the method on the non-redundant dataset was also evalu-
ated. The performance of the method developed using the
non-redundant dataset is shown in Table 2. The overall

performance of this method was very close to the performance
of the method developed using the original dataset. This
observation proves that our method can perform well on
both similar and diverse sequences.

The comparison of a newly developed method with existing
methods is necessary to instil confidence in users. Towards
this end, we have compared the performance of our methods
with the existing GPCR subfamilies classification method
developed by Karchin et al. (5). The performance was com-
pared by computing the GPCRs correctly predicted before the
first false positive error. Our method correctly predicted 98%
of GPCRs before the first error was observed, which is similar
to the performance of the HMM-based method developed by
Karchinetal. (5).Theperformanceofthedipeptidecomposition-
based method was nearly 13% greater than the existing
Fisher score vector (FSV)-based method for recognizing the
five classes of GPCR (5). This proves that dipeptide compo-
sitionisabetter feature in termsofencapsulatingglobal informa-
tionaboutproteins.Dipeptidecompositionprovidesinformation
about the fraction of amino acids as well as the local order of the
amino acids. In the past, it has been observed that dipeptide
composition can classify proteins with superior accuracy
thanaminoacidcompositionorpseudo-aminoacidcomposition
(12–15).

The identification of GPCR subfamilies is of major interest
to pharmaceutical companies and experimental biologists. The
prediction of subfamilies is crucial in assigning a function to
GPCRs. Therefore, we have developed modules for classify-
ing the subfamilies of the rhodopsin-like family. The
performance of this module was evaluated using 2-fold
cross-validation. The performance of the module in predicting
the subfamilies in terms of accuracy and MCC is shown in
Table 3. The prediction accuracy for most of the subfamilies
was >85%. The overall accuracy and MCC for 14 subfamilies
of the rhodopsin-like family of GPCRs were 97.3% and
0.97 respectively. Poorer results were achieved for a few
subfamilies owing to the lower number of sequences for train-
ing. The results suggest that the different subfamilies of the
rhodopsin-like family are quite closely correlated with dipep-
tide composition, implying that GPCR subfamilies are pre-
dictable with superior accuracy if a good training dataset can
be established for this purpose.

Performance on the independent dataset

It is ideal to evaluate methods on an independent/blind dataset
to demonstrate their true or unbiased performance. The
sequences of the independent dataset were used neither for

Table 2. The performance of our method in identifying the five major classes of GPCR

GPCR families (Class) Original Non-redundant

Seq ACC (%) MCC Seq ACC (%) MCC

Rhodopsin and andrenergic-like receptors (Class A) 692 98.1 0.80 496 98.9 0.86
Calcitonin and PTH-like receptors (Class B) 56 85.7 0.84 40 95.0 0.96
Metabotropic-like receptors (Class C) 16 81.3 0.81 12 100.0 0.86
Pheromone-like receptors (Class D) 12 36.4 0.49 11 36.6 0.60
cAMP-like receptors (Class E) 3 100.0 1.00 3 33.3 0.58

Seq, ACC and MCC: number of sequences, accuracy and Matthew’s correlation coefficient, respectively. The non-redundant dataset was created from the original
dataset after removing sequences having >90% identity with other sequences in the dataset.
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training nor for testing during the development of the method.
Therefore, in this study, the performance of our method and an
existing method (5) was evaluated at class level as well as at
subfamily level using the independent dataset (Table 4). The
method developed in this study and Karchin et al.’s method
were able to correctly predict 593 (91.2%) and 542
(83.3%) GPCRs, respectively (Table 4). This proves that the
performance (91.2%) of our method is superior to that of
the existing method. These results also demonstrate that the
performance of both methods is highly accurate on the inde-
pendent dataset.

The performance of our method as well as of Karchin et al.’s
method (5) at subfamily level was also evaluated using this
dataset. The performance of our method in predicting the
subfamilies of Class A is shown in Table 5. Unfortunately,
Karchin et al.’s method did not predict any subfamilies due to
some technical problem on the server. The overall accuracy of
our method for major subfamilies of Class A is �93%. These
results clearly indicate that our method is highly accurate for
data not used for training and testing.

We applied our SVM-based method to a set of peptides from
GPCRDB that were not classified beyond inclusion in Class A
(2). We considered a value of 1.0 for the difference between
highest and second highest SVM to assign subfamilies with
good reliability. The method is able to assign subfamilies to
42 unclassified protein sequences. The list of protein
sequences assigned subfamilies by our method is provided

in Table_sup4 of the Supplementary Material. We do not
have the resources in our lab to verify our predictions by
wet experimentation. Users are encouraged to do so.

This study illustrates a new principle for the classification of
GPCRs when information about the features of a protein in the
primary sequence is extracted in the form of dipeptides. The
dipeptide compositions transduce the protein information to
fixed-length vectors, which is a crucial requirement for the
development of machine learning techniques-based methods.
The most notable feature of our method is its ability to dis-
tinguish all the families as well as the subfamilies of GPCRs
with extremely high accuracy. Thus, this method can be used
to recognize novel GPCRs as well as their functional classi-
fication. The method can assist in automated functional anno-
tation of genomic data and can help in reducing the gap
between the amount of genomic sequence data produced
and the annotation rate.

GPCRpred SERVER

Based on our study, we have developed a web server that
allows the user to recognize and classify GPCRs from primary
amino acid sequences. GPCRpred is freely available at http://
www.imtech.res.in/raghava/gpcrpred/. The common gateway
interface (CGI) script for GPCRpred is written using PERL
version 5.03. This server is installed on a Sun Server (420E)
under a UNIX (Solaris 7) environment. Users can enter the
primary amino sequence in any standard format (EMBL/
FASTA/GCG) or plain text format. The server uses the

Table 4. The performance of our method and Karchin et al.’s method (5) on an

independent dataset at class level

GPCR families (Class) Total sequences Correctly predicted sequences

Our method Karchin et al.’s method

Rhodopsin and andrenergic-like receptors (Class A) 431 431 427
Calcitonin and PTH-like receptors (Class B) 129 111 20
Metabotropic-like receptors (Class C) 76 43 76
Pheromone-like receptors (Class D) 12 7 12
cAMP-like receptors (Class E) 2 1 2
Overall 650 593 (91.2%) 542 (83.3%)

The numbers in brackets specify the overall accuracy of methods.

Table 5. The performance of our method on a independent dataset in

recognizing 10 major subfamilies of the rhodopsin-like family

GPCR Class A subfamilies Total Correctly
predicted

Amine 25 24
Peptide 69 68
Hormone proteins 2 2
Rhodopsin 7 5
Olfactory 296 270
Prostanoid 3 3
Nucleotide-like 7 6
Cannabis 1 1
Gonadotrophin releasing hormone 10 9
Lysospingolipids 11 11
Overall 431 399 (92.6%)

The numbers in brackets specify the overall accuracy of method.

Table 3. The performance of our method in classifying the major subfamilies

of the rhodopsin and andrenergic family of GPCRs

GPCR Class A subfamilies ACC (%) MCC

Amine 99.1 0.99
Peptide 99.7 0.95
Hormone proteins 100.0 1.00
Rhodopsin 98.9 0.99
Olfactory 100.0 0.99
Prostanoid 100.0 0.99
Nucleotide-like 85.4 0.92
Cannabis 100.0 1.00
Platelet activating factor 100.0 1.00
Gonadotrophin releasing hormone 100.0 1.00
Thyrotropin releasing hormone 85.7 0.93
Melatonin 100.0 1.00
Viral 33.3 0.58
Lysospingolipids 58.8 0.76
Overall 97.3 0.97

ACC and MCC: accuracy and Matthew’s correlation coefficient, respectively.
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Figure 2. The GPCRpred home page and result page. (A) The GPCRpred homepage showing the principle features of the interface. (B) A GPCRpred results page
showing a summary of the submitted sequence and final prediction results.
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ReadSeq subroutine developed by Don Gilbert to parse the
input sequence. Users can submit sequences for prediction
using file uploading or cut-and-paste options, as illustrated
in Figure 2A. After analysis, the results are shown in a
user-friendly format. The results provide summarized infor-
mation about the query sequence and prediction. An example
of prediction output is shown in Figure 2B.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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