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ABSTRACT
Motivation: It is currently believed that the human genome
contains about twice as much non-coding functional regions
as it does protein-coding genes, yet our understanding of these
regions is very limited.
Results: We examine the intersection between syntenically
conserved sequences in the human, mouse and rat genomes,
and sequence similarities within the human genome itself, in
search of families of non-protein-coding elements. For this pur-
pose we develop a graph theoretic clustering algorithm, akin
to the highly successful methods used in elucidating protein
sequence family relationships.

The algorithm is applied to a highly filtered set of about
700 000 human–rodent evolutionarily conserved regions, not
resembling any known coding sequence, which encom-
passes 3.7% of the human genome. From these, we obtain
roughly 12 000 non-singleton clusters, dense in significant
sequence similarities. Further analysis of genomic loca-
tion, evidence of transcription and RNA secondary structure
reveals many clusters to be significantly homogeneous in
one or more characteristics. This subset of the highly con-
served non-protein-coding elements in the human genome
thus contains rich family-like structures, which merit in-depth
analysis.
Availability: Supplementary material to this work is available
at http://www.soe.ucsc.edu/~jill/dark.html
Contact: jill@soe.ucsc.edu

1 INTRODUCTION
It has been estimated that at least 5% of the human genome
is under purifying selection and thus likely to be functional
(Mouse Genome Sequencing Consortium, 2002; Roskinet al.,
2003; Chiaromonteet al., 2003). By far the best studied func-
tional features of the genome are protein-coding genes, but
their coding exons account for only about 1.5% of the gen-
ome (2% if UTRs are included) (International Human Genome
Sequencing Consortium, 2001). The remaining 3–3.5%, the
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dark matter of the human genome, is likely to contain mainly
gene regulatory regions (both transcriptional and splicing),
RNA genes and micro-RNAs, matrix attachment sites, origins
of replication (all of which are reviewed by Mattick, 2003) and
perhaps some altogether novel functional elements (remem-
ber that micro-RNAs were unknown just a few years ago!).
Efforts are underway to provide a functional annotation for
non-coding elements but databases of experimentally verified
loci like Transfac (Matyset al., 2003) for regulatory regions or
RFAM (Griffiths-Joneset al., 2003) for RNA genes, contain
information about only a tiny fraction of the regions under
discussion.

Comparative genomics has proven to be a powerful
approach for locating functional loci by identifying regions
of the genome that show a significant degree of conserva-
tion in other species. Many published analyses focus on
human–mouse comparisons (e.g. Dermitzakiset al., 2003;
Dieterichet al., 2003 and references therein) but more recent
works utilize newly available sequences, mostly from mul-
tiple mammals (Boffelliet al., 2003; Margulieset al., 2003;
Santini et al., 2003 and others). Unfortunately, measuring
conservation levels is of little help by itself for assign-
ing a putative function to these phylogenetically conserved
regions. Computational functional annotation of non-coding
conserved elements is thus an acute bioinformatic challenge
with extremely important applications.

The majority of the genes in the human genome has been
initially annotated by sequence homology to genes, in human
or other organisms, about which more was known at the
time. Tools like psi-Blast (Altschulet al., 1997) have been
developed to detect remote homologs for a given protein
sequence, and have resulted in a significant improvement of
our understanding of gene functions. Based on these tools,
various clustering algorithms have been developed for group-
ing together proteins with similar domains (e.g. Kawajiet al.,
2004; Enright and Ouzounis, 2000; S.Kim, unpublished data).
This hierarchy of found relationships between the known
proteins is curated in various database, such as InterPro
(Mulder et al., 2003).
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Fig. 1. Definition of the conserved non-coding regions to be clustered. Starting from the 5% most conserved sequences with respect to mouse
and rat, the number of regions and their coverage of the human genome is given after each masking operation.

Annotation by homology has only recently been applied, at
a small scale, to putative non-coding functional elements. In
an analysis of the CFTR region (Margulieset al., 2003), it was
found that most of the regions of interest appeared to be unique
in the human genome (based on Blast similarity searches),
and thus homology searches within the genome added new
information only in a few cases. This may be because the
homology search tools used are not capturing properly the type
of sequence similarity most relevant for non-coding regions.
It may also be because the function of some of these regions is
genuinely unique in the genome. Still, this general approach
has allowed the classification of some RNA genes and regu-
latory elements (e.g. Griffiths-Joneset al., 2003, Sumiyama
and Ruddle, 2003).

Here, a first step is proposed to provide genome-wide
classification of conserved non-coding regions of the human
genome by homology. We start by comparing the human gen-
ome to the mouse and rat genomes, using stringent filters
to remove many annotated regions (such as genes, pseudo-
genes, repeats, etc.) to identify roughly 700 000 regions of
high conservation, dissimilar to any known coding sequences,
covering∼3.75% of the human genome. It is then shown that
even using a simple sequence similarity measure (the standard
affine-gap local sequence alignment method), it is possible to
cluster regions with similar sequences, and thus possibly sim-
ilar function. The many clusters identified have a number of
interesting properties that hint at a variety of possible func-
tions: some contain a hundred or more highly similar regions,
others are located near genes of a particular family; are loc-
ated predominantly in introns; or contain known or predicted
structural RNA genes, etc. It is our belief that this approach is
a first step in establishing a genome-wide annotation pipeline
focusing on non-coding functional regions.

2 METHODS
We start by identifying a set of putative functional non-coding
regions by detecting portions of the human genome that share

significant similarity with their syntenic homologs in mouse
and rat. To cluster these regions, we define a similarity graph
G = (V ,E) whose verticesV are this set of human conserved
regions and whose edgesE are the pairs of regions that share
significant sequence similarity within human. We then define
a new algorithm for detecting dense clusters in this type of
graph and apply it to obtain clusters of highly similar, phylo-
genetically conserved regions of the human genome. Finally,
the clusters identified are evaluated for enrichment for an array
of attributes pointing to interesting putative functions.

2.1 Defining conserved elements
The process of defining the non-coding conserved regions
to be analyzed in this study is summarized in Fig. 1. To
detect regions of the human genome that are likely to be func-
tional, we identify portions that are highly conserved with
respect to their mouse and rat orthologs. A three-way mul-
tiple alignment between the genomes (NCBI human Build
34, NCBI mouse Build 32 and Baylor rat assembly version
3.1), produced by the HUMOR program (W. Miller, available
at http://bio.cse.psu.edu/) was obtained from the UCSC gen-
ome browser (http://genome.ucsc.edu/), to establish orthology
between the three genomes. Some 40% of the human genome
is thus aligned to regions in mouse and/or rat.

The alignment was scanned with a 50 bp sliding window
and the conservation of each window was evaluated using a
method that calculates ap-value for the degree of conserva-
tion observed, under a null model of neutral evolution, taking
into consideration the phylogenetic relationships among the
species considered (Margulieset al., 2003). A conservation
threshold was chosen so that 5% of the whole human gen-
ome, the current estimate for functional sequences in the
genome, was marked as conserved, which resulted in a set
of 1055 823 regions of average size 140 bp. About 74%
of all bases in coding exons of known genes (as defined
in the knownGene annotation in Karolchiket al., 2003) are
within these regions, although they account for less than 13%
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Human chr1: 12345-12375     AGCA-CGACTAC--GCATCGCATCGCAG-CGCATACAGCAGTACGAT

                                  || |||  ||| | |||| ||| ||| || ||||| |||

Human chrX: 654321-654381   TAAATAGAATACCCGCA-CCCATC-CAGCCGC-TATAGCAGAACGGC

Conserved region A

Conserved region B
Blastz human-human 
local alignment

Region of the alignment
used to compute w(A,B)

Fig. 2. Scoring the similarity between two conserved regions using a Blastz human–human local alignment. The scorew(A,B) of the
alignment is based only on the shadowed area.

of the combined length of these regions (17% if UTRs are
included).

In order to avoid fragmenting functional units into several
conserved regions, we extended each region by 10 bp on each
side. We then applied a set of filters to ensure that the con-
served regions retained are syntenic in mouse and rat (and
thus more likely to be from alignments of orthologous DNA)
and highly likely to be non-coding. The regions masked out of
further consideration included various known types of repeats
(Smit, 1999; Benson, 1999), as well as coding exons from
several sources, consolidated in the UCSC human genome
browser (Karolchiket al., 2003). From the remaining set we
removed all unannotated bases with detected similarity to the
known coding exons, using the sensitive Blastz search tool
(Schwartzet al., 2003). Finally, to ensure that the regions
used for the clustering were not the result of a primate-specific
duplication, we eliminated all regions outside of a high quality
synteny net to mouse (Kentet al., 2003), as well as those con-
tained in putative pseudo-genes (Torrentset al., 2003; Zhang
et al., 2004) and in regions suspected of being recent human
specific segmental duplications (Baileyet al., 2002).

As each masking phase fragments the regions of interest,
filtered regions less than 50 bp long were also discarded. The
resulting 699 647 regions, which form the vertices of our sim-
ilarity graph, are not known to belong to any of the above
classes, or even resemble coding sequences, and yet they
exhibit high syntenic conservation between the three mam-
mals. The average conserved region obtained is 153 bp long,
while the longest is 3079 bp.

2.2 Measuring intra-human similarity
To identify which pairs of human conserved regions are sim-
ilar (i.e. to place edges in the similarity graph), we use a pre-
computed Blastz set of local alignments of the repeat-masked
human genome against itself (available through the UCSC
genome browser). The significance threshold on sequence
similarity was set very high to avoid too many false-positives.

A pair (u,v) of human regions can only be connected by
an edge if a consecutive block of 15 alignment positions or
more is found betweenu andv by means of a Blastz local
alignment. Lets(u,v) be the similarity score of the part of
Blastz alignment located withinu andv (Fig. 2), calculated
using the standard affine-gap penalty method. If the alignment

is too short or of too poor quality [s(u,v) < 0], no edge is
placed betweenu andv. Otherwiseu andv are connected by
an edge of weightw(u,v) = s(u,v).1

2.3 Identifying clusters
Similar to the result reported by Margulieset al. (2003) for
a 1.8 Mb region around the CFTR gene, genome-wide we
find that the large majority of conserved regions appear to be
unique in human, at least based on Blastz alignments. About
96% of the 699 647 vertices of the similarity graph are not
connected to any at other vertex. Nonetheless, this leaves
29 349 regions similar to at least one other in the human gen-
ome. The graph contains 8333 connected components, 1446
of which are of size at least three vertices and 257 of size at
least 10. The largest connected component has 823 vertices
and 1673 edges.

The connected components of the similarity graph construc-
ted constitute a first approximation to the clusters sought.
They correspond to the clusters that would be produced by a
single-linkage clustering algorithm. However, these connec-
ted components are often quite loose and may contain more
than one dense cluster.

The problem of clustering a similarity graph to identify a
dense subgraph has been studied extensively in the case where
the vertices of the graph are proteins (e.g. Kawajiet al., 2004;
Enright and Ouzounis, 2000; S.Kim, unpublished data). It was
noted that in that context, simply taking for clusters the con-
nected component of the graph was inadequate because: (i)
false-positive edges tend to collapse two dense clusters into a
single large connected component, and (ii) multi-domain pro-
teins tend to be in several different clusters, again collapsing
them into one connected component. The same two problems
occur with our non-coding regions: (i) false-positive edges
are possible and (ii) conserved regions made of two different
but adjacent functional units play the same role as multi-
domain proteins by connecting unrelated clusters. Approaches
proposed to handle this situation include iteratively remov-
ing minimum-weight cuts in the graph (Kawajiet al., 2004).
Others rely on the identification of biconnected components

1There may actually be two different Blastz alignments between regionsu

andv, one with each sequence as reference. In that case,w(u,v) is defined
as the maximal scores of the two alignments.
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Fig. 3. (A) Identification of dense subgraphs by our heuristic. Assuming all edges have weight 1,δc = 1 andδa = 0, the original graph
has no cut-of-cost less than 2 but has a vertex with local-articulation score zero. This vertex is first duplicated. The resulting graph has two
cuts-of-cost one, whose edges are removed. The resulting graph has three dense connected components. (B) Example of an actual cluster (ID
652.29, see text for details). Small vertices were those removed by the algorithm.

and articulation points (S.Kim, unpublished data) or use
a multi-stage approach (Enright and Ouzounis, 2000). The
approach we use here is a heuristic that borrows from all three
of the above approaches. To refine each connected component,
we define a vertex partitioning operation and a vertex duplic-
ation operation that, when applied recursively on a connected
component, yield a set of dense, edge-disjoint subgraphs.

Recall that a cut of a weighted graphG = (V ,E,w) is a
partition of the vertices into two disjoint non-empty subsets
A andB, with A ∪ B = V . The weight of a cut(A,B) is∑

(u,v)∈E,u∈A,v∈B w(u,v). A low-weight cut of the graph thus
separates a set of regions into two groups with little similarity
between them. We are going to use minimum-weight cuts to
detect false-positive edges and eliminate them.

Two approaches are used to detect and break-up multi-
functional regions. First, to break-up a putative such region
u, the Blastz local alignments betweenu and all other regions
it connects to in the graph are mapped onu’s sequence. If
the alignments stack-up in two or more disjoint portions of
u, the regionu is divided into its non-overlapping portions.
This is sometimes not sufficient to break all multi-functional
regions and we introduce the notion of local-articulation point
to handle more difficult cases. We define the local-articulation
score of a vertexv as follows. LetN(v) be the set of neighbors
of v (excludingv itself), letG|X be the subgraph spanned by
a subset of verticesX, and letC = (A,B) be a minimum-
weight cut of the induced subgraphG|N(v) spanned by the
vertices ofN(v) (with N(v) = A∪B). Then, we define local-
articulation(v) = weight(C)/|N(v)|. In other words, vertex
v will have a low local-articulation score if, when ignored, its
neighbors can be partitioned into two sets with little similarity
between them. Vertices with low local-articulation score are
likely to correspond to conserved regions containing more
than one functional unit. When such a vertexv is found,
with a minimum weight cutC = (A,B), it is duplicated

and one copy is connected to the regions inA while the other
is connected to the regions inB (Fig. 3). This approach is a
generalization of the simpler articulation points method used
by (S.Kim, unpublished data). For example, in Fig. 3, graph
A has no good cut and no standard articulation vertex, yet
the black vertex is clearly joining two different clusters and is
detected as such.

To decompose a connected component into its dense
clusters, the min-cut removal and local-articulation duplica-
tion operations are executed recursively on each connected
component produced until the clusters left are sufficiently
dense (see an example in Fig. 3). Here we use two heuristic
Blastz score thresholdsδc = 2000 below which a cut is per-
formed, andδa = 200 below which a local-articulation vertex
is duplicated. The details of the algorithm are described below.

Algorithm CUT(V ,E,w)
Input: A weighted graphG = (V ,E,w).
Output: The minimum weight cut(A,B)ofV , and its weight.
Implements the Fiduccia-Mattheyses heuristic (Fiduccia and
Mattheyses, 1982; Kawajiet al., 2004).

Algorithm BEST-LOCAL-ARTICULATION(V ,E,w)
Input: A weighted graph(V ,E,w).
Output: The vertexv ∈ V with be best local-articulation
score, together with the partition(A,B) of the neighbors of
v, and the weight of the cut induced.
smin ← +∞
for each vertexv ∈ V do

(A,B, s) ←CUT(G|N(v))

if (s < smin) then (vmin,Amin,Bmin, smin)←(v,A,B, s)
return (vmin,Amin,Bmin, smin)

Algorithm GRAPH-PARTITIONING(V ,E,w, δc, δa)

Input: A connected weighted graphG = (V ,E,w)
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Output: Prints a set of dense clusters ofG.
(A,B,x) ← CUT(V ,E,w)
if (x < δc) then E ← E − {(u,v) ∈ V : u ∈ A,v ∈ B}
else

(v,A,B,y) ←BEST-LOCAL-ARTICULATION(V ,E,w)

if (y/|N(v)| < δa ) then /*duplicate v */
V ← V ∪ {v′} /* add vertexv′ */
E ← E ∪ {(v′,b) : b ∈ B}
E ← E − {(a,b) : a ∈ A,b ∈ B} − {(v,b) : b ∈ B}

else print (V ′,E′), return /* we found a dense cluster */
for each connected component(V ′,E′) of (V ,E) do

GRAPH-PARTITIONING(V ′,E′,w)

Since the Fiduccia and Mattheyses (1982) heuristic runs
in time O(E), finding the best local-articulation takes time
O(V E), so each iteration of graph-partitioning takes the same
time. Since each partitioning iteration either removes one or
more edges or duplicates a vertex, and since a vertexv can be
duplicated at mostN(v) times, there can be at worstO(E)

iterations, and thus the algorithm runs in timeO(V E2). In
practice our 8333 connected components were partitioned in
an hour on a desktop machine, with the largest fraction of the
time spent on the few very large connected components.

Applying the clustering approach above yields a set of
12 027 dense, homogeneous clusters whose size vary between
2 and 105 regions, with 296 clusters of size at least 5 and 84
of size at least 10. Among the 84 clusters of size at least 10,
the average degree of a vertex is 6.1. Some clusters are nearly
perfect cliques (e.g. ID 1758.3 has 25 vertices and 206 edges,
over a possible 300), but in most case the degree of a vertex is
between 4 and 10, irrespective of cluster size. In total, 18 734
human regions are within some cluster (less than in the ori-
ginal graph because some vertices became singletons in the
clustering process and were eliminated). The average length
of the regions belonging to a dense cluster is 225 bp.

2.4 Testing significance of features shared by
regions in a cluster

Assuming that members of a cluster share a common func-
tionality, inferring a potential function for the cluster as a
whole may be easier than doing so for each region indi-
vidually because (i) functional annotation for one member
can be mapped to other members, and (ii) statistically
over-represented features shared by members may hint at
function. Since very few of the members of our clusters
have reliable annotation, we focus mainly on the statistical
over-representation approach.

We consider the following set of boolean features of con-
served regions that may help assign a putative function to the
clusters:

Genomic location: For each of seven types of genomic fea-
tures relative to known genes (1 and 10 kb upstream and
downstream, intergenic regions, UTRs and introns), a boolean
attribute is defined on each conserved region with value 1 if

the conserved region overlaps a feature of the given type and
0 otherwise.

Association to known genes: Each classification term in the
Go (Harriset al., 2004) and InterPro (Mulderet al., 2003)
databases defines a boolean attribute. A conserved regionR

has value 1 for such an attribute if the closest known gene to
R has that particular Go or InterPro classification, or one of
its descendants in the ontology hierarchy.

Coding potential: This attribute is 1 if and only if the region
overlaps a gene prediction from one of four chosen gene
predictors.

Evidence of transcription: Attributes are defined for overlap
with ESTs and mRNAs.

Non-coding RNAs: Attributes are defined for overlap with
known RNA genes (Griffiths-Joneset al., 2003).

Predicted RNA secondary structure: A region has this attrib-
ute if its minimal free-energy secondary structure [computed
with RNA-fold (Hofackeret al., 1994)] is lower than that
of 99% of 1000 randomly shuffled sequences with the same
nucleotide composition.

Conservation in distant species: Fugu and chicken.

For each boolean attributeA from the list above, we use the
set of all human conserved regions to estimate the background
probabilityp that a given region has attributeA, except for
the RNA secondary structure attribute where this would be too
costly and where we setp = 0.01. We then obtain ap-value
for the observed number of members with attributeA in a
cluster of a given size, under a null model where the attribute
A has value 1 independently with probabilityp, using the
cumulative of a binomial distribution.

Since more than 10 000 clusters are to be tested, a Bonfer-
roni type correction is necessary. Here we only report regions
with uncorrectedp-value below 10−5.

3 RESULTS
Initial analysis of the set of clusters obtained makes it clear
that we are facing a heterogenous set of clusters of a variety
of classes. Table 1 lists a few of the more intriguing clusters
significantly enriched for each type of features described in
Section 2.4.

Considering first the overlap with known functional non-
coding regions, we find 47 clusters containing exclusively
members with an RNA gene annotation (Griffiths-Joneset al.,
2003) (some of which are shown in Table 1). We find 30
unannotated regions that belong to a cluster with at least one
member annotated as micro-RNA or RNA gene, suggest-
ing a functional classification for the other members of the
cluster. A subset of these novel RNA genes is currently being
tested experimentally (P.Schattner, A.Pohl and T.Lowe, data
not shown).

Several clusters are significantly enriched for gene pre-
dictions, and may correspond to novel protein-coding gene
families. Although we have removed from consideration all
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Table 1. A sample of clusters found to be enriched for particular attributes

Attribute Cluster ID #v #Att p-value Comment

RNA genes 5390.1 6 6 9.7e− 22 Hu-U71b snoRNAs
2483.22 9 4 1.2e− 12 miRNA mir-154. Also detected by RNA sec. struct.p-value

screening
41 others <1.6e− 08 various RNAs and miRNAs

Chicken conservation 14.381 59 38 3.7e− 13 No conservation in fugu
156.175 16 15 6.3e− 10 Many matches to chicken EST

1730.12 13 11 1.4e− 6 Five regions have coding potential (p-value 4.9e−4)
2003.3 19 15 8.1e− 8 Ten regions have coding potential (p-value 1.8e−8) and 8

regions have RNA secondary structure (p-value 7.2e−13)

Fugu conservation 4415.3 5 5 7.9e− 11 Just 5′ of exons of SCNxA gene family (p-value 8.4e−6),
all are conserved in chicken (p-value 3.7e−4)

4290.2 4 4 8.3e− 9 3′ end of 5′-UTR of histone H1 family
4787.3 4 4 8.3e− 9 Downstream of alt. splices exons of the NEB gene
5602.2 4 4 8.3e− 9 All are predicted genes with EST evidence
855.1 4 4 8.3e− 9 All have strong RNA sec. str (p-value 1e−8)

24 others <8.6e− 07

ESTs 652.29 10,21 6 9.7e− 7 Six sites are<1 kb downstream of exons of various genes
(Fig. 3B).

Upstream 6137.8 11 10 2.6e− 17 5′ of genes of the ALEX family. Many other clusters are
associated with the same family

6895.5 5 4 4.4e− 7 Just 5′ of genes of the PCDHB family
1848.5 4 4 4.4e− 7 Just 5′ of genes of the KRTHA family
4982.2 5 5 2.8e− 7 5′-UTR of genes of the SCNxA family. Many other clusters

are associated with the same family
5105.1 5 4 4.4e− 7 5′-UTR of genes of the GRYD family
4 other clusters <5.2e− 6 Various gene families

1 kb intron flanks 6898.2 12 11 7.5e− 11 Downstream of alternative first exons of PCDHG family
Many other clusters are associated with the same family

4969.6 12 9 1.2e− 7 Upstream of repetitive exons of TTN

Gene predictions 7708.1 15 15 1.8e− 19 Consecutive regions contained in a 12 kb ORF upstream of
c2orf16

5011.6 5 5 5.6e− 7 Consecutive regions contained in a 5 kb ORFupstream of
AK126051

3089.3 5 5 3.1e− 8 Similar to collagen alpha 3 VI chain precursor

RNA sec. struct. 652.45 25 13 4.6e− 20 8 regions overlap gene predictions
221.127 12 9 2.1e− 16 See Fig. 4

50 others <1e− 6

Go/InterPro annotation 631 18 15 1e− 18/1e− 28 Mostly intronic, to various homeobox transcription factors

#v is the number of vertices in the cluster. #Att describes the number of cluster members that have a given attribute (also see Supplementary Material).

known coding regions, and even went to the extent of mask-
ing all sequences that resemble even short stretches of coding
exons (recall Fig. 1), it is to be expected that uncharacterized
gene families, if they exist, should come up in our analysis.
Several other attributes reinforce the coding hypothesis. First,
for many of the clusters, mRNA and EST evidence exists,
attesting active transcription. Second, many of these putat-
ively coding clusters are also conserved in chicken, further
suggesting functional importance. Finally, in many cases
the boundaries of the gene predictions, obtained through a
conceptually different approach, match closely those of our
conserved regions. Although Blastz detects no DNA sequence
similarity between these regions and any known coding exons,

there are a few clusters for which a more sensitive tBlastn
search reveals some weak protein similarity to know genes
(e.g. cluster 3089.3 in Table 1).

Several clusters are highly enriched for regions conserved
in chicken, and sometimes all the way back to fugu. Besides
those with good coding potential described above, many are
found in the vicinity of coding exons and in UTRs of gene fam-
ilies, like the Voltage-gated sodium channel alpha and histone
H1 families. These are good candidates for transcriptional and
splicing regulatory elements.

Perhaps one of the most interesting clusters (cluster 652.29
in Table 1) consists of 10 regions, 6 of which occur in introns,
less than 1kb downstream of an exon, and one just upstream
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Human GAGGTGCATTTACTCTTTGA-CCCACTAGGGTACTATTTAGTGTTCTAGAAGAGGTAATTTAGTAAATTGTACCCCAGTGGCCTGAAAAAGTTAA

Mouse GAGGTGCATTTACTCTTTGA-CCCACTAGGGTACTATTTAGTGTTCTAGAAGAGGTAATTTAGTAAATTGCACCCCAGTGGCCTGGAAAAGTTAA  

Human GATTAATGTGT-CTCTTTCATGGCACTAAGGTAC-ATTTAGAGCACTA-AAGAAGTCATTTACTAAATGGTGCCCTTGAGACTTGAAAGAGTTAA

Mouse GATTAATGTGG-CTCTTTCAGGGAACTAAGGTGC-ATTTAGAGCACTA-AAGAAGTCATTTACTAAATGGTGCCCTTGGGACTTGAAAGAGTTAA 

Human -AGGTGCATTAACTCTTCCAGGCCCCTAGGGTATCATTTAGTTCACTG-GAATAGTAATTTACTAAACTGTACCTTAGGGGCCTGAAAATGTTAA

Mouse -AGGTGCATTAACTCTTTCAGGCCCCTAGGGTATCATTTAGTCCACTG-GAATAGTAATTTACTAAACAGTACCTTAGGGGACTGAAAAAGTTAA 

5'

3'

Fig. 4. (Top) Predicted RNA secondary structure for one human region belonging to cluster 221.127, at genomic position chr15:65621880-
65622205 (Structure predicted by mfold). (Bottom) Alignment of a portion of three human regions belonging to that cluster, each with its
mouse ortholog. The first sequence is the one folded in (A).

of a first exon. This cluster is shown in Fig. 3B. Notice that
the seven genes within or near which these regions lie form
the dense core of the cluster. Although some of these genes
have related function (DNA binding), they do not appear to be
paralogs, which suggests that this element family has evolved
independently of a gene family, and perhaps confers a required
function to the genes in which it resides. A detailed study of
this cluster is underway and will be reported elsewhere.

We identify a number of clusters whose members are sys-
tematically located upstream, downstream or in UTRs of
known gene families. Although each gene in these gene fam-
ilies originated from a duplication that predated the primate-
rodent split, the regions identified maintain a high degree of
inter-species and intra-human conservation. We hypothesize
that these are probably involved in the transcriptional or spli-
cing regulation of the respective gene family. The use of the
Go functional annotation and InterPro protein domain classi-
fication allows us to examine the genes within, or next to lie
the elements of a cluster. This facilitates both an independent
analysis of the clusters, as well as an added perspective on any
of the sets highlighted by the other attributes.

Finally, more than 50 clusters are highly enriched for
regions with significant RNA secondary structures. Although
some of them overlap known RNA genes and micro-RNAs,
a large fraction is left unannotated, and most of them have
no significant correlation with any other attribute we tested.
Among the most interesting examples are ID 652.45 (Table 1),
containing 25 members, 20 of which are predicted to fold into
a significant RNA secondary structure usually made of three
long hairpins. Another interesting case is cluster 221.127,
whose members consistently fold into a single, long hairpin.
An alignment of three of these regions, together with their
respective mouse orthologs is shown in Fig. 4. This type of
secondary structure, together with the very high degree of
sequence conservation in mouse may indicate that this cluster
corresponds to a novel family of micro-RNAs.

The interpretation of the function of many of the larger
clusters is more problematic, with none of the attributes
tested revealing statistically significant biases, except for
occasional weak enrichment for RNA secondary structure.
Although some of these clusters appear quite dense in terms
of average pairwise similarity, it is possible that they may
still contain more than one dense core that our algorithm
has failed to decompose. This would obviously hamper the
annotation efforts by increasing the noise level. On the other
hand, it is also possible that some of these clusters do share
a function that does not correlate with any of the features we
tested. Another possibility is that these clusters correspond to
undocumented repetitive regions, although the strict phylo-
genetic conservation threshold we employ should remove
from consideration most of these non-functional regions.

4 DISCUSSION AND FUTURE WORK
This paper presents a first step toward genome-wide intra-
species annotation of functional non-coding human regions
based on sequence homology. We show that a large number
of these regions can be clustered in groups of highly similar
sequences, and thus are likely to consist of elements of similar
function. Admittedly, these represent a relatively small frac-
tion of all the conserved human regions. In fact, we repeated
the clustering procedure with the subset of coding sequences
found in the top 5% of the human genome aligning to mouse
and rat, after filtering out non-syntenic regions, similar to our
pre-processing in Fig. 1. While only about 5% of the intervals
(and total number of bases) in our set had any edge to another
member of the set, as much as 50% of the highly conserved,
syntenic coding sequences have such matches within their
respective set. Nonetheless, the 18 734 non-coding regions
that we clustered represent a large set highly enriched for
putative functional elements.

We see this as a very encouraging sign: despite the fact that
the measure of similarity used was not targeted at finding
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one specific type of functional region, a large number of
clusters were identified and many proved to provide valu-
able information about the function of their members. The
function of the majority of the clusters we identified remains
unclear but because of the strict filtering applied to the input,
it is unlikely to be too similar to known features in the
genome. As our understanding of our genome improves,
more and more clusters will be better characterized and
understood.

A number of research directions are opened up by our
approach. A first, immediate goal, which we are already pur-
suing is the further analysis of the elucidated clusters. Several
more screens can be applied to each individual cluster, as
well as ancestral reconstruction to attempt and detect remote
homologies, and possibly hierarchical relationships between
the different clusters, as is the case in the protein world.
It is also expected that with the characterization of these
clusters we may be able to better define sequence similarity
measures for specific types of functional regions, such as reg-
ulatory modules and classes of RNA genes, as well as improve
our clustering methodology. This interplay between methods
and results is bound to enrich our set of clusters as well as
improve our understanding of them, in much the way that our
understanding of protein sequences has evolved.
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