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For many newly sequenced genes, sequence analysis of the putative pro-
tein yields no clue on function. It would be bene®cial to be able to ident-
ify in the genome the regulatory regions that confer temporal and spatial
expression patterns for the uncharacterized genes. Additionally, it would
be advantageous to identify regulatory regions within genes of known
expression pattern without performing the costly and time consuming
laboratory studies now required. To achieve these goals, the wealth of
case studies performed over the past 15 years will have to be collected
into predictive models of expression. Extensive studies of genes
expressed in skeletal muscle have identi®ed speci®c transcription factors
which bind to regulatory elements to control gene expression. However,
potential binding sites for these factors occur with suf®cient frequency
that it is rare for a gene to be found without one. Analysis of experimen-
tally determined muscle regulatory sequences indicates that muscle
expression requires multiple elements in close proximity. A model is gen-
erated with predictive capability for identifying these muscle-speci®c
regulatory modules. Phylogenetic footprinting, the identi®cation of
sequences conserved between distantly related species, complements the
statistical predictions. Through the use of logistic regression analysis, the
model promises to be easily modi®ed to take advantage of the elucida-
tion of additional factors, cooperation rules, and spacing constraints.
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Introduction

Eukaryotes, from yeast to man, maintain diverse
batteries of genes whose expression levels can be
modulated to satisfy the demands of developmen-
tal, environmental or physiological conditions.
While eukaryotes can manipulate the abundance of
proteins through a variety of mechanisms at the
DNA, RNA, and protein levels, the most direct
and utilized cellular tool is the alteration of gene
transcription rates by the differential binding or
modi®cation of factors bound to cis-acting enhan-
cers. Numerous transcription factors have been
identi®ed with roles in context-speci®c expression,
but the activity of any single activating factor is
rarely suf®cient to explain a biological response.
Recent studies suggest that complex, co-operative
protein-protein interactions between transcriptions
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factors are required to determine gene expression
patterns (Arnone & Davidson, 1997). The limited
knowledge of the interactions between general
transcriptional proteins, co-activators, transcription
factors, and the DNA-protein scaffold has pre-
vented the formulation of quantitative models to
explain complex gene expression patterns, result-
ing in an abundance of case studies with little gen-
eralization.

Muscle tissues have been extensively studied for
regulation of gene expression. These tissues have
been categorized into three groups: skeletal, cardi-
ac, and smooth muscle (Stockdale, 1992; Hauschka,
1994). Within each group multiple sub-classi®-
cations have been de®ned, such as fast or slow
twitch for skeletal muscle, ventricular or atrial for
cardiac muscle, and vascular or non-vascular for
smooth muscle. Skeletal muscle expression has
been most extensively studied, probably as a result
of good cell culture models for differentiation
(Buckingham, 1992; Olson, 1992; Taylor & Jones,
1979). Expression studies have identi®ed numerous
genes which are expressed in differentiated myo-
# 1998 Academic Press Limited
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tubes, but not in myoblasts (Buckingham, 1994).
A few dozen of these genes have been analyzed
experimentally, sometimes extensively and always
partially, to determine the regulatory elements
required for expression in differentiated muscle
cells.

Regulatory analysis and muscle differentiation
studies have revealed several families of transcrip-
tion factors which contribute to skeletal muscle-
speci®c expression. MyoD, originally discovered
for its ability to convert ®broblasts into myoblast-
like cells (Davis et al., 1987), is the best known
member of the skeletal muscle-speci®c, myogenin-
subfamily (Myf) of basic helix-loop-helix (bHLH)
proteins. Myocyte-speci®c enhancer factor 2
(Mef-2) is a family of transcription factors. The
Mef-2 isoforms are expressed predominantly in
skeletal and cardiac muscle, with expression of
some isoforms observed in brain cells (Pollock &
Treisman, 1991). The broadly expressed Serum
Response Factor (SRF), which is distantly related
to the Mef-2 family (both are members of the
MADS superfamily), activates expression through
CArG sites which are found in many muscle-
speci®c genes (Vandromme et al., 1992). Recently
several Tef-1-related, muscle-speci®c factors which
functionally bind to muscle-speci®c CATT regulat-
ory elements (M-CAT sites) have been identi®ed
and cloned (Farrance & Ordahl, 1996; Jacquemin
et al., 1996). The ubiquitous Sp-1 transcription
factor, originally considered to be an activator of
ubiquitously expressed housekeeping genes, func-
tionally binds to sites required for muscle-speci®c
expression (Sartorelli et al., 1990). Uncharacterized
binding activities like Mef-3 (Spitz et al., 1997),
Trex (Fabre-Suver & Hauschka, 1996), and the
reverse CArG binding protein (Gopal-Srivastava
et al., 1995) have been linked to muscle-speci®c
expression, but further studies are required to con-
®rm broad muscle-speci®c roles for these proteins.
The collection of factors with a demonstrated role
in activating muscle-speci®c expression continues
to grow in size.

The individual binding of a transcription factor
to a regulatory element is rarely suf®cient to confer
context-speci®c expression. Cooperation between
multiple factors interacting at multiple sites
appears to be essential for muscle gene regulation
(Weintraub et al., 1990), but the biochemical rules
governing these interactions remain largely
unknown. The presence of multiple regulatory
sites is required for muscle-speci®c expression of
the muscle creatine kinase (Amacher et al., 1993),
troponin-C (Parmacek et al., 1994), and cardiac
b-myosin heavy chain (Shimizu et al., 1992) genes,
but multiple regulatory sites alone are not suf®-
cient to confer context-speci®c expression as shown
in a study of Mef-2 binding sites (Gossett et al.,
1989). Cooperation may be dependent on spacing
constraints, as suggested for the interaction of Mef-
2 and Myf proteins (Fickett, 1996a). The identi®-
cation of such spacing constraints requires elucida-
tion of a large number of functional pairs, or
focused spacing studies. The identi®cation of
additional muscle regulatory regions would help
decipher the cooperativity rules which govern con-
text-speci®c expression, but the time and expense
required for detailed regulatory analysis limits the
number of genes which can be characterized in the
laboratory.

The growth of skeletal muscle regulatory infor-
mation combined with recent computational
advances has opened new avenues for identi®-
cation of regulatory sequences. When one or two
binding sites are known for a transcription factor,
identi®cation of new sites is based on comparison
to the known sites and is only minimally effective
(Claverie & Sauvaget, 1985; Claverie & Audic,
1996). After several transcription factor binding
sites are known or in vitro selection data are gener-
ated, computational studies can utilize specialized
multiple alignment methods and position weight
matrices (PWM) to more effectively characterize
binding speci®city and identify possible novel sites
(Staden, 1984; Bucher, 1990). Use of PWMs allows
quantitative discrimination of sites, with calculated
site scores approximating the binding energy of
the pro®led transcription factor (Stormo, 1990;
Berg & von Hippel, 1987, 1988). A recent study
found that 95% of the highest scoring sites ident-
i®ed in the GenBank primate DNA sequence data-
base with a PWM for the liver-speci®c
transcription factor HNF-1 can be bound by HNF-
1 in vitro (Tronche et al., 1997). This ®nding indi-
cates that a carefully constructed PWM is a highly
effective tool for identifying sequences which can
be bound by a speci®c transcription factor (cf. also
Fickett, 1996b).

The ability to recognize sites to which a factor
binds in vitro, however, is only a ®rst step towards
accurately identifying regulatory regions within an
uncharacterized genomic sequence. A signi®cant
portion of identi®ed sites seems to be inactive, as
demonstrated by the presence of HNF-1 sites in
genes speci®cally expressed in subsets of cells lack-
ing HNF-1 (Tronche et al., 1997). Further analysis
depends on combining information from a variety
of computational tools to indicate which sites are
likely to be functional (Duret & Bucher, 1997).

Here, a new approach is developed for the
identi®cation of skeletal muscle-speci®c regulatory
modules within a genomic sequence. PWMs for
the well characterized muscle factors are devel-
oped and analyzed. Potential binding sites for
these muscle factors are found to be more preva-
lent in muscle regulatory regions than other
sequence sets. An analysis of known regulatory
regions indicates that multiple muscle-speci®c sites
are concentrated into regulatory modules. Logistic
regression analysis on multiple sites provides a
model through which potential regulatory regions
can be found. Phylogenetic footprinting, the identi-
®cation of conserved sequences, complements the
logistic regression predictions, allowing the identi-
®cation of regions within genes likely to confer
muscle-speci®c expression. The ¯exibility of the
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logistic regression model allows for continual
re®nement as new factors are characterized,
cooperation rules are established, and genomic
sequence data expands.

Results

Generation of frequency matrices from known
muscle-specific regulatory elements and
binding sites independent of muscle genes

As a tool to locate binding sites for transcrip-
tion factors associated with skeletal muscle-
speci®c expression, we developed position weight
matrices pro®ling the binding sites of Mef-2, Myf,
Sp-1, SRF, and Tef factors. While similar in con-
cept to a consensus sequence, PWMs account for
the frequency of each base at each position in an
alignment of known sites (Staden, 1984). To
ensure maximum speci®city of the PWM, only
those sites were desired for which there was
clear and direct evidence both for function and
for the identity of the factor bound. Thus sites
were collected directly from the experimental lit-
erature. Sites were included if required for gene
expression in skeletal muscle, even if the con-
ferred expression is limited to skeletal muscle
subtypes like fast-twitch, slow-twitch, or embryo-
nic skeletal muscle cells. The experimentally
determined sites were aligned using a Gibbs
sampling algorithm (Lawrence et al., 1993; Fickett,
1996b). The frequency matrices drawn from the
alignments of the muscle-speci®c sites are pre-
sented (Figure 1A).

Construction of speci®c PWMs requires utiliz-
ation of the maximum number of elements avail-
able, so all known muscle regulatory sequences
bound by each transcription factor were included
in the binding pro®les. The in¯uence of any single
element on the function of a PWM is small; never-
theless searching for regulatory regions with
matrices including elements drawn from the
regions can be considered circular. In order to pro-
vide an approach without circularity, matrices
were also constructed for each transcription factor
using data obtained from in vitro binding studies
and regulatory sequences from genes not speci®-
cally expressed in muscle cells (Figure 1B). High
quality in vitro binding site selection data were
available for Mef-2 (Pollock & Treisman, 1991),
Myf (Funk & Wright, 1992), and SRF (Pollock &
Treisman, 1990) factors. No site selection data
were available for the recently discovered muscle
Tef factors, so a muscle-gene independent matrix
was produced from ®ve functional binding sites
known for the widely expressed Tef-1 protein.
While site selection data have been published for
Sp-1 (Thiesen & Bach, 1990), the data from this
early application of the procedure provided insuf-
®cient ¯anking sequence information for analysis.
A set of well characterized Sp-1 sites from genes
not speci®cally expressed in muscle was aligned
instead. Binding site selection data for the proto-
oncogene c-jun/AP-1 (Pollock & Treisman, 1990)
were aligned to produce a matrix for use as a
negative control of muscle-gene element detec-
tion.

The frequency matrices derived from muscle and
independent sources exhibit signi®cant differences.
As previously observed (Fickett, 1996b) the Mef-2
matrices are similar at most positions, but the
muscle sites show tolerance for adenosine at pos-
ition 12 and stricter nucleotide preferences at pos-
itions 2 and 9. The muscle E-box (Myf) matrix has
strict nucleotide requirements at positions 7 and
12 relative to the TSDA-derived matrix. The Sp-1
matrices differ outside the central positions. The
Tef matrices differ primarily at position 6, with
muscle-derived sites showing a strict requirement
for thymidine. The SRF matrices differ from the
others in that the site-selection matrix shows
stricter binding preferences, particularly at pos-
itions 8 to 10. The differences observed between
the muscle and site-selection matrices (Mef-2,
Myf, SRF) most likely arise from the absence of
binding cofactors or differences in the transcrip-
tion factor isoforms present in vivo and utilized
in the in vitro studies. For example, the binding
pro®les of c-Jun homodimers are distinct from
the pro®les for c-Jun/c-Fos heterodimers (Pollock
& Treisman, 1990). The Sp-1 and Tef differences
may re¯ect differences between protein isoforms
as has been observed for Mef-2 proteins in
muscle and brain (Andres et al., 1995). While
there are obvious distinctions between the
muscle-derived and independent data matrices,
the pro®les are suf®ciently similar for comparison
in subsequent analyses.

Generation and analysis of the position
weight matrices

The frequency matrices were converted into pos-
ition weight matrices (PWMs). Using PWMs allows
a potential site to be quantitatively evaluated by
summing the appropriate entries for the nucleo-
tides observed at each position. The ®nal quantitat-
ive site scores can be either positive or negative
with a unique score range for each matrix.

To assess the sensitivity and speci®city of the
PWMs, all were tested against the known muscle
regulatory elements. All of the muscle-derived
matrices were more effective than the correspond-
ing muscle-independent PWMs at identifying the
sites. This partially results from the circular nature
of the approach, but, also, likely re¯ects the above
discussed biological differences between the data
used to produce the matrices. The score range
observed with each PWM for the known,
experimentally de®ned, muscle regulatory sites
are presented as a percentage of the individual
matrix potential score range (Table 1):
100 � (observed_score ÿmin_score_possible)/
(max_score_possible ÿmin_score_possible). The
presented score ranges cannot be directly com-
pared between matrices, as each matrix varies in



Figure 1. Position frequency matrices. Capital letters in consensus sequences indicate invariant nucleotides. A, Regu-
latory sites with an experimentally determined role in skeletal muscle gene expression were obtained and grouped by
the transcription factors which bind to them. The groups of sequences were aligned and the frequency of each nucleo-
tide at each position is presented in these matrices. B, In vitro selected binding sites or functional sites with no role in
muscle-speci®c expression (Sp-1 and Tef-1) were obtained and aligned.
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the length of the site, the number of known sites
contributing to the matrix, and the base compo-
sition. To compare scores, the frequencies of hits in
the primate subset of GenBank above a threshold
were determined for each matrix (Table 1). The
known-site threshold score for each matrix was set
to the lowest score determined for any known site.
The site frequencies range from 190 bp/hit for the
independent Sp-1 matrix to 7100 bp/hit for the
muscle-derived Tef matrix. This range of speci®city
may re¯ect biological differences in the binding of
the individual factors.
Site frequencies in a variety of datasets

The relationship observed between the log of the
frequency of sites scoring above a threshold score
and the threshold score is approximately linear
(representative graphs are shown in Figure 2). In
three sequence collections analyzed, including a set
of photoreceptor regulatory regions, the EPD data-
base of eukaryotic promoter regions (Bucher &
Trifonov, 1986), and the primate subset of Gen-
Bank (January 1997, 5.4 � 107 bp), the linear plots
have approximately equal slope and y-intercept for



Table 1. Statistics for construction and performance of the position weight matrices

Factor Name Sites source Number sites Known site scores (%) bp/hita

Mef-2 A/T-rich Nat-mus 22 88±100 3700
Mef-2 A/T-rich TSDA 52 76±90 500
Myf E-box Nat-mus 16 82±99 390
Myf E-box TSDA 20 80±100 230
SRF CArG Nat-mus 17 86±100 3000
SRF CArG TSDA 46 70±83 760
TEF M-CAT Nat-mus 21 89±97 7100
TEF M-CAT Nat-other 5 83±100 490
Sp1 G/C-box Nat-mus 12 85±99 570
Sp1 G/C-box Nat-other 10 77±96 190
AP-1 TRE TSDA 18 86±100 720

a Frequency of potential sites is expressed as the average number of base-pairs between ``hits'' (bp/hit) in the primate division of
GenBank, where a hit is any site scoring at least as well as some experimentally veri®ed functional site.
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each matrix. A higher frequency of high scoring
sites is observed in the collection of minimal
muscle regulatory regions. This prevalence of high
scoring sites is observed with both muscle site-
dependent and independent matrices (Figure 2A
and B). The plots for the frequency of sites
within the photoreceptor dataset is truncated at
the threshold score at which the small size of
the dataset resulted in the identi®cation of no
sites. The SRF graphs are representative of the
graphs produced with Tef, Myf, and Mef-2. Sp-1
sites were found to be most prevalent in the
muscle collection, but were also more common
in the EPD, re¯ecting the ubiquitous role of Sp-1
factors in gene expression (data not shown). The
PWM for the transcription factor AP-1, which is
not linked to muscle gene expression, did not
identify a greater representation of high scoring
sites in any of the datasets (Figure 2C). In con-
trast to the muscle factor matrices, a matrix for
photoreceptor-speci®c Ta elements identi®ed a
higher frequency of sites within the photo-
receptor set, and approximately equal site fre-
quencies in the muscle, EPD, and GenBank
datasets (data not shown). The PWMs for the
muscle transcription factors ®nd high scoring
sites more frequently in sequences linked to
muscle-speci®c expression.

The number of putative sites scoring above the
known-site threshold scores indicates that most of
the sites are not biologically functional. Sites
were identi®ed in the primate subset of GenBank
with the muscle SRF PWM at a rate of one per
3000 bp (Table 1), or about three putative sites
for every human gene. The union of the EPD
sequences containing predicted binding sites for
muscle factors reveals remarkably little selectivity
for muscle regulatory sequences, with 97% of the
promoters containing at least one putative site.
Even with the exclusion of the Sp-1 sites which
occur frequently in many regulatory regions unre-
lated to muscle expression, sites were still ident-
i®ed in 60% of the sequences in EPD with the
muscle derived PWMs (Table 2). A more accurate
methodology is needed for identi®cation of
potential regulatory regions.
Clustering of functional sites in
regulatory regions

Recent studies of muscle regulatory sequences
have indicated that cooperativity between tran-
scription factors bound to distinct elements is a
key to generating muscle-speci®c expression
(Weintraub et al., 1990; Amacher et al., 1993;
Fickett, 1996a; Firulli & Olson, 1997). Similarly,
other context-speci®c regulatory regions appear to
contain multiple, functional binding sites (Arnone
& Davidson, 1997). To determine if muscle regulat-
ory elements commonly occur in groups of two or
more, a review of extensively studied muscle genes
was performed. All muscle regulatory regions ana-
lyzed by linker scanning or other comprehensive
mutagenesis were found to contain multiple func-
tional elements within 200 bp regions (Figure 3),
with most containing two sites within a 100 bp
region.

Multiple sites as predictors for muscle
regulatory regions

Based on the co-occurrence of elements in
muscle regulatory regions, the frequency of pairs
of sites scoring above the known-site threshold
scores in regulatory sequences was determined.
Using the more speci®c muscle matrices, 48% of
known muscle regulatory sequences were ident-
i®ed, but 27% of the EPD sequences were found to
contain two non-overlapping sites within a 500 bp
region (Table 2). The same 48% of muscle regulat-
ory regions were still detected when the pairs were
required to occur within 100 bp, while the EPD
hits dropped to 15%. An extension of the multiple
sites approach to regions containing three sites
resulted in further decreases of sensitivity, without
substantial gains in speci®city (data not shown).

The dual site approach is improved by taking
into consideration the quantitative score for each
putative element. When pairs of non-overlapping
sites within 100 bp were measured by Poisson
probability, the speci®city was improved. Only 8%
of the EPD sites were found to contain pairs of
sites with p < 0.2, while 42% of the true muscle



Figure 2. Frequency of sites identi®ed with position
weight matrices. Plots show the frequency with which
individual matrices identify sites scoring above a
threshold score. Data are presented for matrices derived
from (A) muscle regulatory sites bound by SRF, (B) sites
bound by SRF in an in vitro binding assay, and (C) sites
bound by AP-1 in an in vitro binding assay.
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regulatory regions were identi®ed (Table 2). The
application of a simple statistical model to the dual
site data provides a start towards identi®cation of
muscle regulatory sequences.
A model for identification of muscle
regulatory regions

A variety of mathematical approaches exist for
classifying objects (in our case windows of DNA
sequence) with observed attributes (scores for
putative transcription factor binding sites) into
positive (muscle regulatory regions) or negative
classes. Many of these methods are likely to per-
form with similar effectiveness, and a case could
be made for applying any one of them to the pro-
blem of predicting regulatory regions. Some
methods are prone to over®tting the data, while
others provide little insight into the impact of var-
ious observations on the predicted outcome. One
of the simplest methods to understand, perform,
and interpret is logistic regression analysis (LRA;
Hosmer & Lemeshow, 1989; Vollmer, 1996). As
indicated in Materials and Methods, LRA is based
on identifying coef®cients for each contributing
data ®eld to produce a logit value. The coef®cients
are determined to maximize the discrimination of a
positive training set from a negative training set.
The maximum likelihood procedure for determin-
ing the coef®cients identi®es them in the order of
their contribution to correct classi®cation of the
training data. A coef®cient for a data ®eld is
included in the model only if it signi®cantly con-
tributes to the correct classi®cation of data. The
logit value is scaled to produce a score between 0
and 1.

LRA models were constructed to determine if
the procedure can accurately distinguish muscle
regulatory sequences. A training set of 200 bp
sequences was produced which contained the fol-
lowing non-muscle (negative) sequences: 300 ran-
domly selected promoter sequences from the EPD
database; 1500 randomly drawn sequences from
the primate subset of GenBank; and four sequences
composed of di- and trinucleotide repeats. The
positive training set was composed of the 29 regu-
latory sequences suf®cient for skeletal-muscle-
speci®c expression which have been experimen-
tally localized within 200 bp. Muscle gene regulat-
ory sequences less than 200 bp in length were
extended to include ¯anking nucleotides to bring
the total length of all training sequences to 200 bp.
For all 1833 sequences, the two highest scoring
sites were identi®ed for each transcription factor
matrix. The site score coef®cients obtained for two
models are presented in Table 3. The ®rst model,
using the muscle-derived PWM scores for the
training set, includes coef®cient scores for all ®ve
muscle matrices. With the exception of the SRF
scores, the model utilized only the best scoring site
for each transcription factor. The SRF coef®cient
was applied to the second best site. The coef®cients
for the ®rst model were selected in the following
order: Tef > Sp-1 > Mef-2 > Myf > SRF. The second
model, utilizing the independent PWM scores, uti-
lized the best scores for all ®ve factors, but also
included the second best Sp-1 score. This second
model selected the coef®cients in the following



Table 2. Performance of single or multiple site approaches for identifying the presence of muscle regulatory regions

Muscle PWMs Independent PWMs
Criteria Muscle EPD Muscle EPD

Single sites 45/48 (94%) 768/1285 (60%) 48/48 (100%) 1249/1285 (97%)
Pairs 23 (48%) 342 (27%) 36 (75%) 1119 (87%)
Pairs in 100 bp 23 (48%) 187 (15%) 36 (75%) 960 (75%)
Pairs w/Poisson 20 (42%) 101 (8%) 23 (48%) 371 (29%)
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order: Sp-1 (no. 1) > SRF > Mef-2 > Myf > Tef > Sp-
1 (no. 2).

A test-set of the experimentally determined
muscle regulatory regions not contained in the
training set was used to assess the performance of
the LRA models. In Table 4, the test-set perform-
ances of the LRA models are presented. These per-
formance scores are based on LRA cutoff scores
(thresholds) which enabled identi®cation of 66% of
the muscle regulatory sequences in the training set.
At this threshold, the LRA model based on muscle-
site PWMs identi®ed 60% of the test set, while
only 4% of EPD sequences contained positive hits.
The independent matrices, as with the previous
approaches, showed similar sensitivity, but lower
speci®city (Table 4). The detection of 60% of the
positives in the test set is reasonable for a ®rst gen-
eration regulatory module detector, since it is likely
that additional participating transcription factors
are not yet included (e.g. Mef-3, Spitz et al., 1997
and Trex, Fabre-Suver & Hauschka, 1996).

A jack-knife study was performed in which LRA
models were built from training sets lacking each
one of the 29 positive sequences in turn (data not
shown). Within this set of 29 sequences, the rat
glucose transporter-4 (Glut4) enhancer was the
only one with a change in classi®cation resulting
from the training set variation. More comprehen-
sive jack-knife studies, in which sequences were
removed from matrix construction as well as
model training, were performed for the six weakest
positives in the training set. Only the rat Glut4
enhancer was suf®ciently impacted to result in
misclassi®cation. Overall the model appears
robust, with little dependence on individual
sequences in the training data. Future efforts will
bene®t from additional experimentally de®ned
muscle regulatory regions, but the current data are
suf®cient to generate an effective model.

Detection of muscle regulatory regions in long
genomic sequences

The performance of the muscle PWM LRA meth-
od was further evaluated by its performance in
analyzing long genomic sequences. The 11 human
genomic sequences of 2 � 105 bp or longer present
in GenBank were collected, masked to remove
common repeat elements (Alu, Line, etc.), and
putative regulatory regions were identi®ed by LRA
analysis. A total of 91 non-overlapping regions
were identi®ed as hits (using the cutoff scores for
positive classi®cation of 66% of the muscle mod-
ules in the training set) for a frequency of one
region per 32,000 bp. A review of 33 hits in the
fully annotated sequences was conducted to deter-
mine if the predicted sites are in the vicinity of
genes preferentially expressed in muscle. Since
many of the muscle transcription factor families
also have a role in brain-speci®c expression (Supp
et al., 1996; Leifer et al., 1994; Jacquemin et al.,
1996), genes preferentially expressed in neural cells
were also noted. In the set of 33 predicted regulat-
ory regions, 16 of the putative modules were most
proximal (within 1000 bp) to known muscle or
brain genes (Table 5). The seven sites which were
Figure 3. Muscle regulatory sites
occur in clusters. The regulatory
modules presented contain two or
more sites within a 200 bp span.



Table 3. The logistic regression coef®cients determined for the optimal classi®cation of the training sequences

Variable Coefficient Wald Chi square score Pr > Chi-square

Muscle PWMs Intercept ÿ20.8 82.4 0.0001
Tef 0.53 32.0 0.0001

Sp-1 0.55 30.4 0.0001
Mef-2 0.39 29.7 0.0001
Myf 0.38 16.1 0.0001
SRFa 0.40 13.0 0.0003

Independent PWMs Intercept ÿ21.1 75.7 0.0001
Mef-2 0.29 25.1 0.0001
SRF 0.25 21.2 0.0001
Myf 0.46 19.9 0.0001
Tef 0.60 14.2 0.0002

Sp-1 0.51 9.7 0.002
Sp-1a 0.41 5.1 0.02

a The variables indicated were for the second best site for the speci®ed transcription factor found within the 200 bp window.
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closest to muscle genes were in the vicinity of
a muscle-speci®c DNase-I-like endonuclease
(Pergolizzi et al., 1996; Parrish et al., 1995), the
Emery-Dreifuss muscular dystrophy gene emerin
(Bione et al., 1994), and the recently identi®ed
HXC-26 gene (Toyoda et al., 1996). The generous
classi®cation of both brain and muscle hits as posi-
tive suggests 17 of 33 (52%) sequences could be
incorrectly classi®ed as positive, while a strict
muscle-only criterion indicates 26 of 33 (79%)
could be mis-classi®ed. Genes are still being dis-
covered and characterized in the genomic
sequences (Toyoda et al., 1996), so the numbers
should be considered preliminary and conserva-
tive. There is no similar algorithm to use in a direct
comparison of performance, but these numbers
suggest that a predicted muscle regulatory region
should receive consideration.

The number of predicted regions appears to be
reasonable in quantity. Taking the 79% false posi-
tive rate from the genomic sequence analysis and
the 40% false negative rate from analysis of the test
set into account, the numbers suggest approxi-
mately one true muscle regulatory region can be
anticipated every 80,000 bp. Assuming an average
of two muscle regulatory regions (a promoter and
an enhancer) for every muscle gene, the results
indicate the presence of approximately 5000
human genes with regulatory regions conferring
expression in muscle cells. This is consistent with
recent pro®les of skeletal muscle gene expression
patterns (Pietu et al., 1996; Houlgatte et al., 1995;
Lanfranchi et al., 1996). As the LRA performance
measures are based on an extremely small sample
of the human genome and gene mapping studies
indicate muscle genes cluster in the genome
Table 4. Performance of the logistic regression models for th

Muscle PWMs

Muscle Photoreceptor

Pairs w/Poisson (%) 42 15
Logistic regression (%) 60 0
(Pallavicini et al., 1997), future studies will be
required to reassess the accuracy of the estimates.

Complementing regulatory region analysis
with phylogenetic footprinting

As with any method in biology, con®rmatory
evidence from independent tests greatly strength-
ens a hypothesis. The logistic regression model for
predicting muscle regulatory regions is effective
and promises to be improved as more data and
information accumulate. Nevertheless, putative
muscle regulatory regions will be computationally
identi®ed which turn out to be spurious. In order
to reduce the time spent pursuing false leads, the
LRA prediction can be supported with phyloge-
netic footprinting where the sequence data permit.
In phylogenetic footprinting non-coding sequences
are compared between distantly related species to
identify regions of genomic sequence conserved
over the course of evolution (Duret & Bucher,
1997; Aparicio et al., 1995). Regulatory sequences
are more conserved than non-coding sequences
with no sequence-speci®c function. Phylogenetic
footprinting does not provide information on the
role of conserved regions, but correlation of the
phylogenetic footprints with LRA muscle scores
may help elucidate functional muscle regulatory
regions.

Analysis of genes with tissue-speci®c expression
patterns demonstrates the strength of combining
the muscle regulatory module prediction model
with phylogenetic footprinting. The cardiac b-myo-
sin heavy chain gene is preferentially expressed in
both cardiac and slow-type skeletal muscle.
A regulatory module responsible for skeletal
muscle-speci®c expression has been de®ned 250 bp
from the transcriptional start site (Shimizu et al.,
e identi®cation of muscle regulatory regions

Independent PWMs

EPD Muscle Photoreceptor EPD

8 48 7 29
4 60 7 13



Table 5. Brain and muscle genes identi®ed in analysis
of long genomic sequences as containing one or more
muscle regulatory regions by logistic regression model

Gene name Tissue classification

Emerin Muscle
DNase-I like Muscle
HXC-26 Muscle

Iduronate 2-sulfatase Brain
A-1 Brain
Enolase-2 Brain
DRPLA-1 Brain
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1993). Peaks in both the LRA and phylogenetic
footprint graphs are apparent in this region in
Figure 4A. Additional peaks 50 of the known site
may be true elements, as laboratory studies indi-
cate muscle-speci®c regulatory enhancers are pre-
sent far upstream of the gene, but the speci®c
locations have not been determined (Knotts et al.,
1994). A gene speci®cally expressed in liver, apoli-
poprotein C-III, does not have a predicted muscle
regulatory region which corresponds to a con-
served region (Figure 4B). Peaks in the phylo-
genetic footprint graph are observed in the location
of a module conferring small intestine expression
on the neighboring apolipoprotein A-I gene
(Bisaha et al., 1995) and at the apo C-III liver
expression module adjacent to the ®rst exon
(Mietus-Snyder et al., 1992). A putative muscle
region observed in the LRA graph within the ®rst
intron does not correspond to a peak or highly
conserved region in the phylogenetic footprint,
suggesting the region is not functional. These
examples demonstrate that the combination of the
two analyses can focus attention to regions more
likely to confer muscle-speci®c expression.

Application of the combined approach to a
newly sequenced gene, Nspl-1, identi®es two puta-
tive muscle regulatory modules (Figure 4C). Nspl-1
is expressed in brain and muscle from distinct pro-
moters (Geisler et al., 1998). The brain form is
expressed from a promoter adjacent to the ®rst
exon, while the muscle form is expressed from an
internal promoter adjacent to exon 5. The LRA
peaks correspond to regions immediately adjacent
to the muscle promoter and in the ®rst muscle
intron. These locations are consistent with the pos-
itions of regulatory modules in many genes
(Tronche et al., 1997). The combination of phyloge-
netic footprinting with the muscle regulatory mod-
ule predictor is a powerful tool for the
identi®cation of likely muscle regulatory regions
when homologous sequences are available.

Discussion

The accurate identi®cation of regulatory regions
within a genomic sequence is a dif®cult challenge,
both experimentally and computationally. Vast
time and enormous expense are required for lab-
oratory identi®cation of regulatory regions, making
bioinformatics approaches attractive alternatives.
As the genome projects progress, the increase in
uncharacterized genomic sequence will preclude
laboratory analysis of each gene's regulatory struc-
ture, making computational identi®cation of poten-
tial cis-acting elements valuable. However, the
current methods for analyzing regulatory regions
in silico are not suf®cient. While progress has been
made in identifying sequences to which individual
transcription factors bind, a signi®cant portion of
these putative sites are not active in vivo. To
increase the speci®city of computational predic-
tions, it is necessary to identify regulatory modules
composed of multiple, cooperatively acting
elements.

By combining pro®les of well-characterized
muscle regulatory elements into a predictive
model, we have generated the ®rst computational
means of identifying modules regulating context-
speci®c expression. PWMs which quantitatively
score potential sites are effective at identifying
sequences bound by a transcription factor (Tronche
et al., 1997). Extensive studies of the transcriptional
regulatory mechanisms conferring context-speci®c
expression have identi®ed many of the transcrip-
tion factors required and indicated that multiple
binding sites in proximity are required (Arnone &
Davidson, 1997; Firulli & Olson, 1997). Based on
the regulatory module hypothesis, we have com-
bined transcription factor binding pro®les to devel-
op a simple means of computationally identifying
skeletal muscle regulatory regions using logistic
regression analysis.

Performance

An initial approach for identifying muscle regu-
latory signals based on the presence of individual
binding sites for muscle transcription factors was
not speci®c; in fact putative muscle regulatory sites
were found in 60% of the diverse promoters pre-
sent in the Eukaryotic Promoter Database. By iden-
tifying pairs of sites in proximity and applying a
simple Poisson statistical test, the speci®city was
substantially improved, but only 40% of known
sites were detected. Logistic regression analysis
provided the best performance of the methods
tested, identifying 60% of the known sites in a test
set, and only 4% of the EPD sequences.

It seems that the logistic regression predictions
are correct 20 to 25% of the time. Within the set of
``positive'' EPD sequences, a quarter (13/53) were
from genes known to be preferentially expressed in
muscle. Within the longer genomic sequences
examined, 21% of the putative regulatory
sequences were most proximal to muscle genes.
Some of the genes have only been partially charac-
terized, so this value should be considered conser-
vative. An additional 29% of the putative
regulatory regions were most proximal to brain-
speci®c genes, a number likely related to roles for
Tef, Mef-2, and Sp-1 family members in both
muscle and brain expression (Supp et al., 1996;
Leifer et al., 1994; Jacquemin et al., 1996). In the



Figure 4. Identi®cation of muscle regulatory modules
using logistic regression analysis (dark line) and phylo-
genetic footprinting (gray line). The phylogenetic foot-
print values indicate the percentage identity found in
200 bp windows sliding along an alignment of human
and mouse genomic sequences. To remove peaks of con-
servation resulting from the protein coding sequences,
the footprint scores for regions containing exons were
arti®cially set to ÿ0.1. The numbers along the x-axis
indicate the position within the human sequence.
Regions with high scores from the logistic regression
analysis and evidence of sequence conservation from the
phylogenetic footprinting are indicated with dark
arrows. The thicker arrows indicate regions with evi-
dence from laboratory experiments, while the thin
arrows indicate regions with no published experimental
analysis. Thick open arrows indicate experimentally
de®ned regulatory regions with no role in muscle-
speci®c expression. The positions of the transcription
start sites are represented on the x-axis with triangles.
Plots are for (A) the cardiac b-myosin heavy chain gene
(human M57965, mouse U86076), (B) the liver-speci®c
apolipoprotein C-III gene (human J00098, mouse
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long genomic sequences, the LRA model identi®ed
putative muscle regulatory regions at a frequency
of one per 32,000 bp. The LRA predictions are suf-
®ciently speci®c to warrant further scrutiny of pre-
dicted regulatory modules.

Related work

While we have developed the ®rst practical
algorithm aimed at recognizing all regulatory mod-
ules active in a particular context, others have uti-
lized transcription factor binding sites in predictive
models. Multiple groups have used binding site
distribution to predict the location of gene promo-
ters (Prestridge, 1995; Kondrakhin et al., 1995;
Chen et al., 1997; Solovyev & Salamov, 1997).
These groups coupled TATA site identi®cation
tools with analysis of local binding site density to
determine regions with a statistically meaningful
concentration of putative regulatory sequences.
The methods are designed to recognize promoters
in general, without regard to a particular
expression pattern. Tools for the identi®cation of
sequences containing sites in a speci®c order have
been described (Claverie & Sauvaget, 1985; Frech
et al., 1997). These tools, which identify a series of
regulatory sites with loose spacing rules, have
been applied to well-de®ned strings of sites like
the LTR sequences from retroviruses. A similar
approach was used to ®nd putative yeast regulat-
ory sequences within a speci®ed distance of an
ATG triplet (Fondrat & Kalogeropoulos, 1996).
Since regulatory modules do not have de®ned pos-
itions within genes or orders of binding sites
within modules, these approaches would be dif®-
cult to apply to the problem treated here. Wagner
(1997) calculates the signi®cance of ®nding mul-
tiple imperfect occurrences of a consensus binding
sequence (assuming a Poisson distribution of such
sites) and, for four particular yeast transcription
factors, applies this analysis to suggest genes that
may be strongly regulated by each individual fac-
tor. A recent approach for identifying potential
regulatory regions is based on the presence of
``core motifs'' taken from diverse regulatory
elements (Crowley et al., 1997). A primary differ-
ence in our approach is that we seek to identify
sites which are bound by a set of transcription fac-
tors involved in a speci®c pattern of expression.
An emphasis on regulatory modules composed of
binding sites for multiple transcription factors is an
important evolutionary step in computational gene
regulation analysis.

Issues and improvements for
future examination

As with any ®rst generation computational
method, there are numerous avenues to explore for
L04149), and (C) the Nspl-1 gene (human M89651,
mouse submission pending).



Figure 5. Characteristics to study in future logistic
regression models. Logistic regression analysis can be
applied to a variety of data to generate predictions.
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improvements. Ideally a regulatory module detec-
tion system will accurately identify gene regulatory
regions and propose the contexts in which these
regions will activate expression. Several areas need
to be explored in order to achieve such a system.

While other methods for making predictions
have been successfully applied to sequence anal-
ysis, for instance hidden Markov models (Eddy,
1996) and neural networks (Hirst & Sternberg,
1992), we elected to use logistic regression for
speci®c reasons. Logistic regression is not necess-
arily the only or the best means of identifying
regulatory regions, but it meets ®ve criteria we
sought: (1) predictions are based on biologically
meaningful data, (2) it is a quantitative approach,
(3) results are easily interpreted, (4) the model is
adaptable, and (5) the predictions are suf®ciently
accurate to be useful. Future efforts should explore
other statistical approaches, but we suspect that
signi®cant performance improvements are depen-
dent upon increased understanding of the bio-
chemical processes directing gene expression.

The LRA model is advantageous because
changes and additional features can be quickly
analyzed and incorporated if they improve the
overall ®t of the model to the data. Several features
need to be assessed to determine if their inclusion
will improve the model (Figure 5). The current
LRA model utilizes 200 bp windows for analysis.
This number is arbitrary, and it may be possible to
determine a biologically meaningful window size
which will improve performance (cf. Crowley et al.,
1997). Speci®c offset distances have been found to
be important for cooperating Mef-2 and Myf sites
(Fickett, 1996a). These distances are based on the
helical turn of DNA, such that the center-to-center
distance between two sites is found to equal
n-turns � 10.5 � the ®xed offset. A preliminary
analysis of neighboring Myf sites suggests offset
distances may be important for these pairs as well
(W.W.W. and J.W.F., unpublished observation).
The inclusion of offset rules may improve the
model, but a broad measure of the biological sig-
ni®cance of offsets cannot be determined until
more regulatory regions are analyzed. Regulatory
modules occur more frequently in promoters, ®rst
introns, and in the 30 regions of genes, suggesting
that consideration of the gene context of a region
could improve the model. The LRA-phylogenetic
footprinting studies indicate that site conservation
is also a useful measure, and as more homologous
gene sequences are produced this could be built
into the system. Muscle-linked transcriptional
repressors may bind to regulatory modules, so
binding pro®les of YY-1 (Lee et al., 1992) or Twist
(Spicer et al., 1996) could improve detection. Con-
sidering the limited data for model training, gener-
ation of a complex LRA model could result in
over®tting the data, but some of these additional
features may be valuable.

An alternative to building a complex LRA sys-
tem, is to subdivide the targets sought. In our cur-
rent approach, muscle gene enhancers and
promoters are both classi®ed as regulatory mod-
ules. In reality these are distinct structures which
may require separate tools for identi®cation. The
LRA model accurately predicted 88% of regulatory
enhancers, but only 50% of the muscle promoters.
It may be possible to combine a promoter ®nding
tool (reviewed by Fickett & Hatzigeorgiou, 1997)
with muscle transcription factor binding site identi-
®cation to identify muscle promoters more accu-
rately.

Extension of the skeletal muscle regulatory mod-
ule detection system to other tissues will be chal-
lenging. In order to generate the muscle gene-
based PWMs, a large pool of data from laboratory
muscle gene regulatory analysis was needed and
extensive time was required to construct the
PWMs. For some other extensively studied tissues
it may be possible to produce similar systems, par-
ticularly for cardiac muscle, liver, brain, and kid-
ney modules. However, the small number of genes
comprehensively analyzed is too limiting to extend
the current approach to all tissues and contexts.
In vitro binding assays, as an alternative to compil-
ing regulatory studies, are a powerful tool for the
rapid identi®cation of target sites for transcription
factors. It is possible that focused TSDA analysis,
like a comparison of binding speci®city of brain
and muscle Mef-2 isoforms (Andres et al., 1995),
could provide the needed data to extend regulat-
ory module prediction into other contexts.

Regulatory module identification

The computational identi®cation of regulatory
modules is most informative in two instances: (i)
when a gene is known to be expressed in a speci®c
context, and (ii) when trying to predict expression
patterns for uncharacterized genes identi®ed in
genomic sequences. When a gene is known to be
expressed in skeletal muscle, approximately 60% of
true regulatory regions can be predicted. By com-
bining the LRA model with phylogenetic footprint-
ing, two potential regulatory modules were
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identi®ed in the Nspl-1 gene. Phylogenetic foot-
printing allows proposed regulatory modules to be
assessed by their level of conservation across
species, but no measures yet exist to assess how
much weight should be placed on sequence conser-
vation within putative modules. Identi®cation of
regulatory modules within uncharacterized geno-
mic sequences provides insight into the roles of the
encoded proteins. Application of the LRA model to
genomic sequences identi®ed putative regulatory
modules in several skeletal muscle genes, including
sites in the DNase-I-like and emerin genes. Since
most genes preferentialy expressed in skeletal
muscle contain two or more regulatory modules,
the probability is high that at least one module will
be detected. The results from genomic analysis
suggest that given a prediction, the chances that
the most proximal gene is highly expressed in
muscle is at least one in four. This performance is
suf®ciently speci®c to warrant further analysis of
all predicted modules.

By harvesting the wealth of data generated in
gene regulatory studies, it is possible to develop
computational tools for the identi®cation of mod-
ules regulating context-speci®c expression. The
speci®city of the modular approach results in
meaningful predictions.

Materials and Methods

Gibbs alignment of binding sites and
PWM generation

The PWM generation and search software have been
previously described (Fickett, 1996b). Brie¯y, transcrip-
tion factor binding sites were collected from muscle gene
regulation literature, some of which has been summar-
ized on the World Wide Web in Muscle-Speci®c Regu-
lation of Transcription: A Catalog of Regulatory
Elements (http://agave.humgen.upenn.edu/MTIR/
HomePage.html). Sites for each muscle transcription fac-
tor family were aligned using a Gibbs sampling algor-
ithm (Lawrence et al., 1993) as modi®ed for double-
strand DNA analysis (Fickett, 1996b). Frequency matrices
were produced which contained the number of occur-
ences of each type of nucleotide at each position in the
alignment. To create the weight matrices, the PWM entry
m(b,i) for base b at position i is calculated from the corre-
sponding frequency matrix entry f(b,i), the number of
sites N contributing to the frequency matrix, and the
background probability p(b), according to the formula:

m�b; i� � log��f �b; i� � sqrt�N�=4�=p�b��
(for a full description see Fickett, 1996b). When PWMs
are applied to the analysis of potential sites, the score
generated for any particular sequence with a PWM can
be interpreted either as an estimate of the free energy of
the protein binding to the site, or as the log-likelihood
ratio for (i) the hypothesis that the site will be found
under the frequency model derived from the alignment
of known sites versus (ii) the hypothesis that the site will
be found under a model derived from the background
frequencies of the four bases (Stormo, 1990; Berg & von
Hippel, 1987, 1988).
Multiple site analysis

The approximately linear relationship of site scores to
the log of the occurrence frequency was subjected to
regression analysis to generate an equation to convert
scores to expected frequency. The equations are adequate
representations of the frequencies for a ®rst approxi-
mation. Sequences were analyzed to determine the high-
est two scoring sites found with each PWM. All possible
pairs of these high scoring sites were analyzed to deter-
mine the least likely combination. A Poisson probability
for at least a pair of sites occurring within the observed
distance with the observed scores was determined utiliz-
ing the following equation:

P � �1ÿ eÿl1 � �1ÿ eÿl2 �
The values for l1 and l2 were calculated by multiplying
the frequency (occurrences per bp) of a site scoring at or
above the observed score by the number of base-pairs
from the beginning of the ®rst site to the beginning of
the second site (sites are modeled as point phenomena,
with the abstract point occurrence being at the ®rst base
of the actual site). The lowest probability score was
reported for each sequence analyzed.

Logistic regression analysis

Logistic regression is similar to the linear regression
techniques used to model the dependence of one con-
tinuous variable on another, but logistic regression
models the dependence of a dichotomous (yes/no) out-
come variable on a set of observed (often continuous)
variables. In our case the context is a window of DNA
sequence, the outcome variable is whether or not that
sequence is able to direct muscle-speci®c expression of a
gene, and the observed variables are the best two scores
obtained with each PWM, when each PWM is applied at
each possible position in the sequence. The outcome vari-
able is modeled as:

p�x� � elogit=�1� elogit�
where the logit function is:

logit � a0 � a1x1 � � � � � anxn

Here the xi are the matrix generated scores and the ai are
coef®cients determined by a maximum likelihood pro-
cedure (in our case using SAS, version 6.11).

The scoring of both genomic and individual gene
sequences was performed with a program that identi®ed
the highest scoring sites for each PWM within a 200 bp
window, and calculated the LRA score using the SAS
generated coef®cients.

Phylogenetic footprinting

In phylogenetic footprinting sequences are aligned
and a regional sequence identity is determined for a win-
dow of arbitrary length. To identify the positions of the
exons, a mulitple alignment was produced with three
sequences: the human and mouse genomic sequences
and a sequence composed of the known exons from the
human sequence. The progressive multiple sequence
alignment software program CLUSTAL W version 1.60
(Thompson et al., 1994) was used to generate the
sequence alignments. The gap extension penalty was
adjusted to 0 to allow for large gaps in the intronic
regions and the gap creation penalty was set at 0.8 to
prevent proliferation of gaps. The default match and

(http://agave.humgen.upenn.edu/MTIR/HomePage.html)
(http://agave.humgen.upenn.edu/MTIR/HomePage.html)
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mismatch scores were retained. The output from this
analysis was submitted to a scoring program which cal-
culated the percentage of nucleotides which were identi-
cal between the human and rodent sequences in a
sliding 200 bp window. The presence of any nucleotide
from an exon sequence within the window resulted in
the assignment of a score of ÿ0.1. Based on this scoring
system, in the instances where exons are separated by
less than 200 bp, the phylogenetic footprint shows a
single large region with a score of ÿ0.1.

Sequences

The sequences analyzed in this study for the presence
of regulatory modules are available in public databases.
The genomic sequences of length greater than 200,000 bp
are available with the following GenBank accession
numbers (underline indicates sequences which were
examined for muscle and brain-speci®c genes): Y10196,
U66061, U66060, U66059, U85195, U91321, AF001549,
U91328, AC001228, U91322, U47924, U66082, and
L44140.

Most of the sequences used to generate the position
weight matrices are available in the public databases,
although a small number were obtained from literature
sources. All of the muscle regulatory sites used in the
matrix construction and the sequences in the muscle
regulatory region collection are available on the muscle
regulation World Wide Web page at http://agave.hum-
gen.upenn.edu/MTIR/HomePage.html.

Software

All non-commercial software used in these studies
was programmed in the language C and implemented
on a Sun Unix workstation. The software is available by
request from the authors.
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