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ABSTRACT
Motivation: In the living cell nucleus, genomic DNA is pack-
aged into chromatin. DNA sequences that regulate transcrip-
tion and other chromosomal processes are associated with
local disruptions, or ‘openings’, in chromatin structure caused
by the cooperative action of regulatory proteins. Such perturb-
ations are extremely specific for cis-regulatory elements and
occur over short stretches of DNA (typically ∼250 bp). They
can be detected experimentally as DNaseI hypersensitive sites
(HSs) in vivo, though the process is extremely laborious and
costly. The ability to discriminate DNaseI HSs computationally
would have a major impact on the annotation and utilization of
the human genome.
Results: We found that a supervised pattern recognition
algorithm, trained using a set of 280 DNaseI HS and 737
non-HS control sequences from erythroid cells, was capable
of de novo prediction of HSs across the human genome
with surprisingly high accuracy determined by prospective
in vivo validation. Systematic application of this computa-
tional approach will greatly facilitate the discovery and analysis
of functional non-coding elements in the human and other
complex genomes.
Availability: Supplementary data is available at noble.gs.
washington.edu/proj/hs
Contact: noble@gs.washington.edu; jstam@regulome.com

1 INTRODUCTION
The vast majority of gene regulatory sequences in the human
and other complex genomes remain undiscovered. In the
living cell nucleus, DNA is packaged into chromatin fibers by
non-specific association with the histone proteins that make up
the nucleosome. Binding of activating proteins to regulatory
DNA sequences requires cooperativity between the regulat-
ory factors in order to displace a nucleosome, which in turn
disrupts the local architecture of chromatin. This fundamental
feature of eukaryotic cis-regulatory sequences was recognized
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nearly 25 years ago (Wu, 1980; Gross and Garrard, 1988),
when it was discovered that such sequences were hyper-
sensitive to cutting by the non-specific endonuclease DNaseI
in vivo.

DNaseI hypersensitive sites (HSs) have since proven to
be extremely reliable and generic markers of cis-regulatory
sequences. Mapping of DNaseI HSs is a gold-standard
approach for discovering functional non-coding elements
involved in gene regulation and has underpinned the discovery
of most experimentally established distal cis-acting elements
in the human genome. In most cases, identification of func-
tional elements marked by HSs significantly preceded the
assignment of a specific functional role (enhancer, insulator,
etc.) to those elements (Gross and Garrard, 1988; Li et al.,
2002).

Comprehensive identification of DNaseI HSs in the human
genome would be expected to disclose the location of all
known classes of cis-regulatory sequences, including pro-
moters, enhancers, silencers, insulators, boundary elements
and locus control regions. Computational methods for the
identification of the DNaseI HSs would therefore be expec-
ted to accelerate dramatically the functional annotation of the
human genome.

Traditional approaches to computational prediction of cis-
regulatory sequences in complex genomes have focused on
identification and combinatorial analysis of short sequence
motifs (presumed to represent regulatory factor binding sites)
derived from examples of known sites, analysis of upstream
regions of co-regulated genes (Sinha and Tompa, 2002;
Berman et al., 2002), analysis of phylogenetic data or com-
binations thereof (Prakash et al., 2004). Unfortunately, the
performance of even the most advanced algorithms is poor
(Tompa et al., 2005), and the described methods generally
lack biological validation, particularly in the context of the
human genome. Even in the case of extensively characterized
loci, such as the α- and β-globin domains, computational
motif-based approaches have proven to be of little value for
the discovery or annotation of HSs.
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The core sequences giving rise to HSs in vivo are anticipated
to contain complex features that facilitate recognition by spe-
cific sets of regulatory factors interacting cooperatively over
relatively short distances (150–250 bp) (Felsenfeld, 1996;
Stamatoyannopoulos et al., 1995). However, it is not clear a
priori whether recognition of such features is computationally
tractable.

Conventional molecular approaches to the visualization of
HSs have relied on an indirect method (Wu, 1980), and sub-
sequent experimental localization of the core 150–250 bp
activating sequences is extremely laborious (Lowrey et al.,
1992; Talbot et al., 1990). As a result, relatively few HSs
identified with traditional methods have been localized defin-
itively to specific sequence elements, precluding systematic
computational analyses. Recently, however, novel methods
for large-scale sequence-specific discovery of DNaseI HSs
have been described (Sabo et al., 2004; Dorschner et al.,
2004), providing the basis for the recovery of larger numbers
of DNaseI HSs sequences that can be utilized in computational
models.

In this paper, we demonstrate that a sequence-based classi-
fication algorithm can learn to recognize DNaseI HSs with
high accuracy. To train the algorithm, we take advantage
of a collection of 280 validated erythroid HS sequences
from throughout the human genome. We also use a set of
737 confirmed non-HS sequences of equivalent length. We
employ a support vector machine (SVM) classifier, which
learns by example to discriminate between two given classes
of data (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000).
In a cross-validated test, the SVM achieves an accuracy of
85.24 ± 5.03% in predicting HSs. Furthermore, we per-
form a prospective in vivo experimental validation of the
SVM predictions on previously untested regions of the human
genome, using the assay described by Sabo et al. (2004) and
Dorschner et al. (2004). Among HS predictions to which the
SVM assigns probabilities >80%, 79.4% prove to be HSs on
experimental validation in two hematopoietic cell types.

2 METHODS
2.1 Data
For training and cross-validation of the SVM, we use 280
validated erythroid HS sequences from throughout the human
genome. These enabling sequences emerged from the recent
description of a novel methodology for the identification of
HSs via cloning based on their in vivo activity in K562
erythroid cells (Sabo et al., 2004). We also collected 737
sequences from around the genome (distributed proportion-
ally among the autosomes and X chromosome but except-
ing the Y chromosome) that were non-hypersensitive when
tested in the same cell type. Both K562 HS and non-HS
sequences were similar in size (mean length 242.1 versus
242.8 bp, respectively). The complete dataset is available at
noble.gs.washington.edu/proj/hs

We designed primers using Primer3 (Rozen and Skaletsky,
2000) with the following parameters: target amplimer
size = 250 bp ± 50 bases; primer Tm (melting temper-
ature) optimal = 60 ± 2◦C; %GC = 50% optimal, range
40–80%; length = 24 bp optimal, range 19–27 bp; poly X
maximum = 4.

We cultured erythroid cells (K562, ATCC) under standard
conditions [37◦C, 5% CO2 in air, RPMI 1640 plus 10% FBS
(Invitrogen, Carlsbad, CA, USA)]. We harvested the cultures
at a density of 5 × 105 cells/ml. We performed DNaseI diges-
tions following a standard protocol (Reitman et al., 1993).
DNA was subsequently purified using the Puregene system
(Gentra Systems, Minneapolis, MN, USA).

2.2 Support vector machine
We use the freely available Gist SVM implementation
(Pavlidis et al., 2004). For each SVM optimization, we use the
default parameters: a linear kernel function and a 2-norm soft
margin with asymmetric penalties assigned to the positive and
negative classes. Experiments with higher-order kernel func-
tions and different soft margin settings yielded only very small
changes in performance (data not shown).

The output of the SVM is a unit-free discriminant score;
however, this score can be converted into a more useful prob-
ability by performing a sigmoid curve fit (Platt, 1999). This
approach involves holding out a portion of the training set
from the SVM optimization and fitting the sigmoid parameters
using the discriminants from the held-out data. A probability
score of 50% corresponds approximately to the hyperplane
identified by the SVM, and increasing or decreasing probab-
ilities are reflective (non-linearly) of increasing distance from
the hyperplane (in positive or negative directions). The Gist
software implements this curve fitting procedure.

2.3 Performance measure
We measure the overall quality of an SVM classifier using
a receiver operating characteristic (ROC) curve (Hanley and
McNeil, 1982). The trained SVM receives as input a list of
candidate HS sequences and produces as output a ranked list
of these sequences, with the confidently predicted HSs at the
top of the list. Setting a threshold anywhere in this ranked
list produces a particular rate of true and false positives with
respect to that threshold. The ROC curve plots true positive
rate as a function of false positive rate as the threshold varies
from the top to the bottom of the ranked list. The ROC score
is the area under this curve. A classifier that correctly places
all of the HSs at the top of its ranked list would receive a ROC
score of 1, whereas a random ranking would receive a score
of ∼0.5.

3 RESULTS
The SVM algorithm learns to separate a set of labeled training
data by placing the data in a high-dimensional space (a feature
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space) and discovering in that space a hyperplane that separ-
ates the two classes. Predicting the label of a new, unlabeled
data point simply involves determining on which side of the
hyperplane that point lies. SVMs boast powerful theoretical
underpinnings (Vapnik, 1998) and wide applicability because
of their use of kernel functions to represent data. The kernel
function defines similarities between pairs of data points and
allows the SVM to operate in an implicit vector space even for
non-vector data, such as teer, graphs and strings. In computa-
tional biology, SVMs have been applied to a wide variety of
problems (Noble, 2004), including the classification of sev-
eral types of DNA sequence elements: translation start sites
(Zien et al., 2000) and splice sites (Zhang et al., 2003).

Before the SVM classification of HS and non-HS sequences,
we need to embed the sequences into a vector space. In this
work, this embedding is accomplished by using the spectrum
kernel (Leslie et al., 2002). We hypothesize that the difference
between HS and non-HS sequences can be well characterized
in terms of the presence of various short, motif-like sequence
features. The spectrum kernel exhaustively enumerates all
such features (‘k-mers’) of a given length (k) and represents
each sequence as the frequency with which each k-mer appears
in the sequence. For example, the sequence ‘ACGT’ contains
three distinct 2mers (‘AC,’ ‘CG’ and ‘GT’). The k = 2 spec-
trum kernel representation of this sequence is a 16-element
vector (one entry for each possible dinucleotide), with 0.33
for the three k-mers listed above and 0 for all other entries.
In general, we do not expect the k-mers to be strand-specific,
so reverse complements are collapsed into a single feature.
Thus, for k = 2, there are only 10 distinct dinucleotides. In the
experiments reported here, we concatenate the feature vectors
for k = 1, . . . , 6. Thus, the feature vector representation of a
sequence contains 2 + 10 + . . . = 2772 entries.

3.1 Cross-validation
We first tested the pattern recognition performance of the
SVM via 10-fold cross-validation on the collection of 1017
(280 + 737) sequences. This test involves randomly divid-
ing the sequence set into 10 equal-sized subsets, and then
repeatedly training on 90% subsets of the data and testing the
SVM’s generalization performance on the held-out 10%. For
this data set, the mean area under the ROC curve across 10-
fold cross-validation was 0.842±0.021, indicative of excellent
performance (Fig. 1). At the classification threshold selected
by the SVM, the mean accuracy was 85.24 ± 5.03%.

We hypothesize that the DNaseI sequences that the SVM
fails to identify during cross-validation represent a dis-
tinct, hard-to-identify subclass of DNaseI HSs. To test this
hypothesis, we collected a set of 83 HSs that were incor-
rectly classified as non-HS during cross-validation. Removing
the 83-member false-negative (FN) class from the training
set and then retraining and cross-validating a new SVM
(using the same 737 non-HS sequences) produced an ROC
of 0.970 ± 0.0045. Conversely, a second SVM trained to
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Fig. 1. Receiver operating characteristic curve for SVM discrim-
ination of DNaseI HS versus non-HS sequences. The ROC was
computed by training an SVM on a randomly selected 90% subset
of a dataset comprising 280 HS and 737 non-HS sequences, fol-
lowed by testing on the held-out 10%. The area under this particular
curve is 0.84059, indicative of excellent performance. The dot marks
the location of the decision boundary selected by the SVM. At this
threshold, the SVM correctly identifies 17 HSs and 70 non-HSs, and
makes 6 false positive and 9 false negative predictions.

discriminate between the 83 FN sequences and the remain-
ing 934 sequences achieved an ROC of 0.635 ± 0.026. This
result signifies a weaker classifier, though one which per-
forms substantially better than chance (p < 0.0000017). Thus,
learning accurately to recognize this smaller and potentially
more diverse class of HSs may require a larger training set or
a different collection of sequence features.

3.2 Prospective experimental validation
Next we tested the ability of an SVM trained over a random
90% subset of the combined 1017 K562 HS and Non-HS
examples to predict the in vivo DNaseI HS status in K562
cells of 60 000 non-repetitive sequences (as identified by
the RepeatMasker track on the UCSC Genome Browser)
with mean length 225 bp selected from throughout the
human genome. The expected prevalence of HSs in this set
of sequences is higher than random background but <10%
(Sabo et al., 2004).

From the resulting SVM probabilities, we randomly selec-
ted for further testing sequences with assigned high probab-
ility (>80%; n = 146) and low probability (<20%; n = 43).
Each sequence was tested for DNaseI hypersensitivity in K562
erythroid cells using a previously validated real-time quant-
itative PCR assay designed to discriminate DNaseI HSs with
>95% confidence (Sabo et al., 2004). We found 108/146 of
the high probability predictions to be DNaseI HSs when tested
in K562 cells, yielding a positive-predictive value (PPV) for
the SVM of 73.9% (Fig. 2). Testing of low probability predic-
tions in the same cell type revealed that 39/43 were correctly
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Fig. 2. DNaseI hypersensitivity testing of SVM predictions and
control sequences in K562 cells. The y-axis plots the log2 of
the DNaseI sensitivity ratio (copies remaining in DNaseI-untreated
sample/DNaseI-treated sample) assayed by real-time quantitative
PCR. Results from SVM predictions are stratified into low (<20%),
intermediate (50–80%), and high (>80%) SVM-assigned probab-
ility groups. Means of six replicate measurements for each PCR
amplified sequence (‘amplicon’) corresponding to an SVM pre-
diction are shown with triangles. Results are classified as non-HS
(gray shaded boxes) or HS [blue (95% confidence) and orange (99%
confidence) shaded boxes] on the basis of quantitative DNaseI hyper-
sensitivity measurements obtained with real-time PCR (Sabo et al.,
2004; McArthur et al., 2001; Dorschner et al., 2004) using a valid-
ated model for K562 cells described by Sabo et al. (2004). Results
from 186 randomly selected amplicons from the ENCODE regions
(ENCODE Consortium, 2004) are also shown. The proportion of
HS-positives in the random set (5.3%) is higher than expected for the
genome at large, given the considerably higher gene and functional
element density of the ENCODE regions. (Notably, HSs from the
random set coincided with known or predicted regulatory sequences,
including HS4 from the β-globin LCR and several promoters and
CpG islands.)

classified as non-HSs, for a negative-predictive value (NPV)
of 90.7%. We also examined 49 intermediate probability (50–
80%) predictions, and found 33 (67.3%) to be positive. The
cumulative PPV for all predictions with probability >50%
was 70.6%. These results demonstrate the ability of the SVM
to identify DNaseI HSs in vivo with high accuracy.

The high proportion of true-positive predictions within a
single cell type suggests further that the elements identified
by the SVM might represent a class of HSs that are active in
many tissues or are even constitutive. Additionally, because
some HSs are expected to be tissue or lineage-restricted, a pro-
portion of predictions that yielded negative results in erythroid
cells might prove to be HS in another tissue type. To address
this possibility, we tested a subset (n = 93) of sequences
with assigned probability >50% in another hematopoietic

Fig. 3. Conventional DNaseI HS analysis of SVM predictions. To
confirm further that SVM predictions correspond to classical DNaseI
HSs, we selected positive predictions for conventional DNaseI HS
assays employing the indirect end-label Southern blotting technique
(Lowrey et al., 1992). Shown are exemplary results from an SVM
prediction 400 bp upstream of the Nf1 tumor suppressor gene on
chromosome 17 that coincides with a classical DNaseI HS in both
erythroid (K562) and lymphoid (GM0990) cells. For each tissue type,
lanes represent increasing (left to right) DNaseI treatment intensity
(0, 1, 2, 4, 8 and 16 U DNaseI). A radiolabeled probe is targeted to the
5′ end of a 9.6 kb HindIII fragment encompassing the Nf1 transcrip-
tional start site and upstream and downstream flanking sequences. As
DNaseI concentration increases, the 9.6 kb parental band is cleaved
specifically at the hypersensitive site, releasing the marked sub-band.

cell type, B-lymphoblastoid cells (EBV-transformed primary
lymphoblast line GM0990, Coriell). Of 65 SVM-predicted
HSs that were DNaseI hypersensitive in K562 cells, 58
(89.2%) were also HSs in lymphoblastoid cells. An exem-
plary SVM-predicted HS of this type lying upstream of the
NF1 tumor suppressor gene is illustrated in Figure 3. Con-
versely, we found 8/28 (28.6%) sequences that tested negative
in K562 cells were HS-positive in lymphoid cells. These res-
ults indicate that the overall PPV estimate for the SVM based
on testing only in K562 cells represents a minimum value.
More extensive testing in additional tissue types might reveal
further SVM HS predictions to be correct.

3.3 Genome-wide prediction
We then considered how frequently SVM-predicted sequences
occur in the human genome. We first partitioned the human
genome sequence (assembly hg16 = NCBI 34) into non-
overlapping 225 bp segments and identified 4 217 066 seg-
ments lacking repetitive sequences. Next, we selected and
scored all segments and applied a sigmoid fit to derive probab-
ilities from the SVM discriminant scores. The SVM predicted
36 581 (0.89%) genomic segments to be HSs at a probabil-
ity threshold of 50%; 19 429 (0.47%) had probability scores
>80%. At a cumulative minimum PPV level of 70.6% for
DNaseI HSs in vivo, these results suggest that the human
genome contains >26 500 functional non-coding elements
of the class predicted by the SVM. Analysis of the dis-
tribution of SVM predictions in relation to genes revealed
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strong clustering around annotated transcriptional start sites;
however, 65% of predictions were located >5 kb distant from
the nearest 5′ start site.

3.4 Feature analysis
In order to perform its classification, the SVM simultaneously
exploits a large collection of simple k-mer sequence features.
This collection does not correspond to traditional motifs, but
encompasses them in the context of a rich feature space, which
implicitly allows for mismatching and complex dependencies
between sequence positions by combining many short k-mer
features.

In order to gain some insight into this complex feature space
representation, we analyzed the set of 83 improperly classi-
fied (FN) HSs from the initial training set for the presence
of simple sequence features that distinguished them from the
correctly recognized class. We observed that the CG dinuc-
leotide frequency was significantly lower (1.3%) in the FN
class than in the 197 correctly discerned HSs (6.8%), and that
the AT dinucleotide frequency was also skewed, but to a lesser
degree (6.2% versus 2.8%, respectively).

To examine whether the SVM had exploited these dispar-
ities in producing its initial classifications, we computed the
Pearson correlation between the SVM discriminants and each
of the 2772 sequence features. This analysis revealed that,
during the initial training, the SVM had highlighted CG dinuc-
leotides as the most important simple sequence feature, with
a correlation of 0.916. Previous observations stemming from
specific genes have suggested that certain CpG-rich sequences
play a role in maintaining open chromatin structures (Tazi and
Bird, 1990); however, the generality of this observation was
unknown. A posteriori analysis of the 36 581 human gen-
omic predictions revealed a sharply lower correlation (0.679),
indicating that the SVM was integrating a complex array of
additional features in performing predictions. Given the over-
lap between CpG islands and functionally important genomic
locales, significant overlap between the SVM predictions and
this feature is expected. However, 34% of the 36 581 predic-
tions lie outside CpG islands, as defined by the CpG island
track on the UCSC Genome Browser. Moreover, where over-
lap occurs, only a small fraction (13%) of the CpG sequence
is highlighted by the SVM, suggesting that it is recognizing
the functional core of these nebulously defined elements.

3.5 Enrichment in CTCF sites
Although most classes of regulatory sequences bind to a vari-
ety of regulatory proteins, insulator and chromatin domain
boundary elements invariably contain recognition sites for
the protein CTCF. Insulator and boundary elements organize
the human genome by partitioning functional gene domains
(Bell et al., 2001). These elements typically give rise to
prominent DNaseI HSs that are manifest across a wide range
of tissue types. We therefore hypothesized that CTCF sites

should be significantly enriched in high versus low probabil-
ity SVM predictions. We searched sets of sequences selected
from the top 25% and bottom 25% of the SVM probability
range for occurrences of the canonical CTCF binding motif
CCGCNNGGNGGCAG. This search discovered 3462 CTCF
sites that received positive log-odds scores in the top 25% set
and only 335 such sites in the bottom 25% set. Using a more
stringent log-odds threshold of 2, we found 548 CTCF sites in
the top 25% and 29 sites in the bottom 25% set. Among the top
25% set, 3 CTCF sites perfectly match the consensus and 57
more match with a single mismatch. No sites match this well
in the bottom 25%. The dramatic enrichment of CTCF sites in
high probability SVM predictions suggests that a prominent
subset of SVM-predicted HSs function in vivo as insulator or
domain boundary elements.

4 DISCUSSION
Identification of DNaseI HSs is a gold-standard methodology
for the identification of vertebrate cis-regulatory sequences
and has facilitated the discovery of the vast majority of valid-
ated human cis-regulatory elements residing outside of core
promoters. Although novel molecular approaches for large-
scale mapping of DNaseI HSs have recently been described
(Dorschner et al., 2004; Sabo et al., 2004), comprehensive
annotation of human DNaseI HSs—even in the context of
a single tissue—remains distant and will require substantial
resources. In contrast, computational tools provide the basis
for rapid coverage of the entire genome.

A priori, prediction of DNaseI HSs is expected to be an
extremely challenging computational problem. The fact that it
has proven tractable for a subclass of these elements is there-
fore quite surprising. Given the relatively modest size of the
training sets employed here, the accuracy of the approach
will probably improve with expanded numbers of examples.
Although not every HS necessarily encodes a classical cis-
regulatory element, most HSs do. It is therefore notable
that the current level of predictive accuracy (PPV 70%) is
substantially higher than that described for any computation-
ally based methodology for identification of cis-regulatory
sequences. Nor is attainment of 100% accuracy a requirement,
given the potential for coupling of computational predic-
tions to a platform for high-throughput biological validation,
such as the high-throughput real-time PCR assay employed
here for prospective examination of SVM annotations. Iter-
ative application of the training-and-testing paradigm with
additional HS sequences should enable generation of more
powerful, accurate and diverse classifiers.

Although described and validated in the context of a single
tissue (human erythroid cells), the approach described here
is broadly applicable. Extension of this paradigm to other
tissue types should enable recognition of additional classes
of HSs and, thereby, delineation of large numbers of novel
elements expected to play central roles in the transcriptional
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regulation of human genes. Because DNaseI HSs are a fun-
damental property of cis-regulatory sequences from a wide
variety of organisms, the approach described here should be
widely extensible to other vertebrate genomes, and to higher
eukaryotic genomes generally.

In summary, our results demonstrate the feasibility of
accurate, large-scale computational prediction of the in vivo
signature of human cis-regulatory sequences and provide a
powerful new tool for the annotation of complex genomes.
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