
Notes on Dynamic-Programming Sequence Alignment

Introduction. Following its introduction by Needleman and Wunsch (1970), dynamic pro-

gramming has become the method of choice for ‘‘rigorous’’ alignment of DNA and protein

sequences. For a number of useful alignment-scoring schemes, this method is guaranteed to pro-

duce an alignment of two giv en sequences having the highest possible score.

For alignment scores that are popular with molecular biologists, dynamic-programming

alignment of two sequences requires quadratic time, i.e., time proportional to the product of the

two sequence lengths. In particular, this holds for affine gap costs, that is, scoring schemes under

which a gap of length k is penalized g + ek, where g is a fixed ‘‘gap-opening penalty’’ and e is a

‘‘gap-extension penalty’’ (Gotoh, 1982). (More general alignment scores, which are more expen-

sive to optimize, were considered by Waterman et al., 1976, but have not found wide-spread

use.) Quadratic time is necessitated by the inspection of every pair (i, j), where i is a position in

the first sequence and j is a position in the second sequence. For many applications, e.g., data-

base searches, such an exhaustive examination of position pairs may not be worth the effort, and a

number of faster methods have been proposed.

For long sequences, computer memory is another limiting factor, but very space-efficient

versions of dynamic programming are possible. The original formulation (Hirschberg, 1975) was

for an alignment-scoring scheme that is too restrictive to be of general utility in molecular biol-

ogy, but the basic idea is quite robust and works readily for affine gap penalties (Myers and

Miller, 1988).

The Dynamic-Programming Alignment Algorithm. It is quite helpful to recast the prob-

lem of aligning two sequences as an equivalent problem of finding a maximum-score path in a

certain graph, as has been observed by a number of authors, including Myers and Miller (1989).

This alternative formulation allows the problem to be visualized in a way that permits the use of

geometric intuition. We find this visual imagery critical for keeping track of the low-level details

that arise in development and implementation of dynamic-programming alignment algorithms.

An alignment of two sequences, say S and T , is a rectangular array of symbols having two

rows, such that removing all dash characters from the first row (if any are there) gives S, and

removing dashes from the second row giv es T . Also, we do not allow columns containing two

dash symbols. For instance,

AAGCAA-A

A-GCTACA

is an alignment of AAGCAAA and AGCTACA.

For the current discussion, we assume the following simple alignment-scoring scheme. For

each possible aligned pair [
x

y], where each of x and y is either a normal sequence entry or the

symbol ‘‘−’’, there is an assigned score σ ([
x

y]). The score of a pairwise alignment is defined to

be the sum of the σ -values of its aligned pairs (i.e., columns). For instance if we score each

match (i.e., column of identical symbols) 1, and each other column −1, then the above alignment

scores 1 − 1 + 1 + 1 − 1 + 1 − 1 + 1 = 2.

Recall that a directed graph G = (V , E) consists of a set V of nodes (also called vertices)

and a set E of edges. The edge from node u to node v, if it exists, is denoted u → v. A sequence

of consecutive edges u1 → u2, u2 → u3, . . . , uk−1 → uk is a path from u1 to uk . If each edge

u → v is assigned a score σ (u → v), then the score of such a path is Σk−1
i=1 σ (ui → ui+1).

-2-

We now describe the relationship between maximum-score paths and optimal alignments.

Consider two sequences, A = a1a2
. . . aM and B = b1b2

. . . bN . That is, A contains M symbols

and B contains N symbols, where the symbols are from an arbitrary ‘‘alphabet’’ that does not

contain the dash symbol, ‘‘−’’. The alignment graph for A and B, denoted G A, B, is an edge-

labeled directed graph. The nodes of G A, B are the pairs (i, j) where i ∈ [0, M] and j ∈ [0, N]. (We

use the notation [p, q] for the set { p, p + 1, . . . , q − 1, q}.) When graphed, these nodes are

arrayed in M + 1 rows (row i corresponds to ai for i ∈ [1, M], with an additional row 0) and N + 1

columns (column j corresponds to b j for j ∈ [1, N]). The edge set for G A, B consists of the fol-

lowing edges, labeled as indicated.

1. (i − 1, j) → (i, j) for i ∈ [1, M] and j ∈ [0, N], labeled [
ai

−]
2. (i, j − 1) → (i, j) for i ∈ [0, M] and j ∈ [1, N], labeled [

−
b j
]

3. (i − 1, j − 1) → (i, j) for i ∈ [1, M] and j ∈ [1, N], labeled [
ai

b j
]

Fig. 1 provides an example of the construction.

−
T

−
C

−
T

−
C

−
T

−
C

−
C

T
C

C
C

−
C

−
T

−
T

T
T

C
T

−
T

−
C

−
T

−
C

−
C

T
C

C
C

−
C

−
C

FIG. 1. Alignment graph G A, B for the sequences A = TC and B = CTC .

It is instructive to look for a path from (0, 0) (the upper left corner of the graph of Fig. 1) to

(2, 3) (the lower right) such that the labels along the path ‘‘spell’’ the alignment:

-TC

CTC

The first aligned pair is [
−
C], so the first edge must be horizontal. The second pair is [

T

T], so the

second edge must be diagonal. The third pair is [
C

C], so the third edge must be diagonal. Gener-

ally, when a path descends from row i − 1 to row i, it picks up an aligned pair with top entry ai .

A path from (0, 0) to (M , N) has zero or more horizontal edges, then a vertical or diagonal edges

to row 1, then zero or more horizontal edges, then an edge to row 2, then . . ., so the top entries of

the labels along the path are a1, a2, . . ., possibly with some interspersed dashes. Similarly, the

bottom entries spell B if dashes are ignored, so the aligned pairs spell an alignment of A and B.

Indeed, alignments are in general equivalent to paths, as we now state more precisely.

Fact: Let G A, B be the alignment graph for sequences A and B. With each path from (0, 0)

to (M , N) associate the alignment formed by concatenating the edge labels along the path, i.e.,

-3-

the alignment ‘‘spelled’’ by the path. Then every such path determines an alignment of A and B,

and every alignment of A and B is determined by a unique path. In other words, there is a one-to-

one correspondence between paths in G A, B from (0, 0) to (M , N) and alignments of A and B.

Furthermore, if the score σ (π) is assigned to each edge of G A, B, where π is the aligned pair label-

ing that edge, then a path’s score is exactly the score of the corresponding alignment.

At each node, the score is computed from the scores of immediate predecessors and of

entering edges, which are pictured in Fig. 2. The procedure of Fig. 3 computes the maximum

alignment score by considering rows of G A, B in order, sweeping left to right within each row.

S[i, j] denotes the maximum score of a path from (0, 0) to (i, j). Lines 7-10 mirror Fig. 2. In row

0 there is but a single edge entering a node (lines 2-3), and similarly for column 0 (line 5). This is

a quadratic-space procedure since it uses the (M+1)-by-(N+1) array S to hold all node-scores.

jj−1

i−1

i
(

−
bj

σ)

a
i−

(σ
)

b
j

a
i

(σ

)

FIG. 2. Edges entering node (i, j) and their scores.

1. S[0, 0] ← 0

2. for j ← 1 to N do

3. S[0, j] ← S[0, j − 1] + σ ([
−
b j
])

4. for i ← 1 to M do

5. S[i, 0] ← S[i − 1, 0] + σ ([
ai

−]}

6. for j ← 1 to N do

7. Vertical ← S[i − 1, j] + σ ([
ai

−])

8. Diagonal ← S[i − 1, j − 1] + σ ([
ai

b j
])

9. Horizontal ← S[i, j − 1] + σ ([
−
b j
])

10. S[i, j] ← max{Vertical, Diagonal, Horizontal}

11. write "Maximum alignment score is" S[M , N]

FIG. 3. Quadratic-space, score-only alignment algorithm.

An Example. Consider sequences AGG of length M = 3 and ACGT of length

N = 4. The algorithm systematically fills in entries of a 4-by-5 matrix, where the entry at

the intersection of row i and column j is the highest score of any alignment between the

first i entries of the first sequence and the first j entries of the second sequence. For this

-4-

example, suppose that a match scores 1 and any other column scores −1.

Consider computation of the 2,2-entry, giv en:

A C G T

0 −1 −2 −3 −4

A −1 1 0 −1 −2

G −2 0 ?

What is the best of the three ways to fill in the entry? Moving from the entry 0 to the left

of the new position, or down from the 0 just above, we would add −1 (horizontal or verti-

cal moves always pay the cost for a gap, which is −1 in this example). Coming from the

1 just above and left, we would add the score for aligning A to C, getting 0, so this is the

best move and fills in a 0. Now, what about the next entry?

A C G T

0 −1 −2 −3 −4

A −1 1 0 −1 −2

G −2 0 0 ?

Again the unique best move is down the diagonal, which gives the score 1. Filling in the

entire matrix this way, giv es:

A C G T

0 −1 −2 −3 −4

A −1 1 0 −1 −2

G −2 0 0 1 0

G −3 −1 −1 1 0

Thus the best score for aligning these two sequences is 0. Before reading further, find

two alignments that attain this score.

Determining the Alignment. Given the filled-in score array, an optimal alignment

can be constructed (in reversed order of its columns) by a ‘‘traceback’’ operation, which

walks backwards along an optimal path from the lower right corner to the upper left cor-

ner. The basic operation is to identify which of the three possibilities was chosen to reach

the current position, which gives (1) the nature of the corresponding alignment column

(horizontal move means insertion, diagonal move means substitution, and vertical move

means deletion) and (2) tells the previous position on an optimal path.

For instance, the lower-right corner in the above score array can be attained with

either a horizontal or a diagonal move. Thus, the last column of an optimal alignment

can be either the insertion dash-over-T or the substitution G-over-T.

Computing an Alignment in Linear Space. The next step is to see that the opti-

mal alignment score for A and B can be computed in linear space. Indeed, it is apparent

that the scores in row i of S depend only on those in row i − 1. Thus, after treating row i,

the space used for values in row i − 1 can be recycled to hold values in row i + 1. In other

-5-

words, we can get by with space for two rows, since all that we ultimately want is the sin-

gle score S[M , N].

In fact, a single array, S[0. . N], is adequate. S[j] holds the most recently computed

value in column j, so that as values of S are computed, they overwrite old values. There

is a slight conflict in this strategy, since two ‘‘active’’ values are needed in the current col-

umn, necessitating an additional scalar, s, to hold one of them. Fig. 4 shows the grid

locations of values in S and of scalars s and c when (i, j) is reached in the computation.

S[k] holds path scores for row i when k < j, and for row i − 1 when k ≥ j. Fig. 5 is a

direct translation of Fig. 3 using the memory-allocation scheme of Fig. 4.

i
i−1

j−1 j

s
c

FIG. 4. Grid locations of entries of a vector of length N + 1 just before the maximum path-

score is evaluated at node (i, j). Additionally, a scalar s holds the path score at (i − 1, j − 1)

and c holds the score at (i, j − 1).

1. S[0] ← 0

2. for j ← 1 to N do

3. S[j] ← S[j − 1] + σ ([
−
b j
])

4. for i ← 1 to M do

5. s ← S[0]

6. S[0] ← c ← S[0] + σ ([
ai

−])

7. for j ← 1 to N do

8. c ← max{S[j] +σ ([
ai

−]), s +σ ([
ai

b j
]), c +σ ([

−
b j
])}

9. s ← S[j]

10. S[j] ← c

11. write "Maximum alignment score is" S[N]

FIG. 5. Linear-space computation of alignment scores.

We will soon need to perform this computation in the reverse direction. Here, the

relevant edges are the ones leaving node (i, j), as pictured in Fig. 6, and the quadratic-

space algorithm is given in Fig. 7. A slight generalization of a linear-space version of

-6-

Fig. 7 appears in lines 26-35 of Fig. 9; its derivation is left as an exercise for the reader.

j
i

i+1

a−
(σ

)
i
+
1

j+1
a(σ

)
i+1

b

j+1
(σ)b

−
j+1

FIG. 6. Edges leaving (i, j) and their scores.

1. S[M , N] ← 0

2. for j ← N − 1 down to 0 do

3. S[M , j] ← S[M , j + 1] + σ ([
−

b j+1
])

4. for i ← M − 1 down to 0 do

5. S[i, N] ← S[i + 1, N] + σ ([
ai+1

−])

6. for j ← N − 1 down to 0 do

7. S[i, j] ← max









S[i + 1, j] +σ ([
ai+1

−])

S[i + 1, j + 1] +σ ([
ai+1

b j+1
])

S[i, j + 1] +σ ([
−

b j+1
])

8. write "Maximum alignment score is" S[0, 0]

FIG. 7. Computation of alignment scores in the reverse direction.

Hirshberg’s Insight. We are now ready to describe Hirschberg’s linear-space align-

ment algorithm; the algorithm delivers an explicit optimal alignment, not merely its score.

First, make a ‘‘forward’’ score-only pass (Fig. 5), stopping at the middle row, i.e., row

mid =  M /2 . Then make a backward score-only pass (the linear-space version of Fig. 7),

again stopping at the middle row. Thus, for each point along the middle row, we now

have the optimal score from (0, 0) to that point and the optimal score from that point to

(M , N). Adding those numbers gives the optimal score over all paths from (0, 0) to

(M , N) that pass through that point. A sweep along the middle row, checking those sums,

determines a point (mid , j) where an optimal path crosses the middle row. This reduces

the problem to finding an optimal path from (0, 0) to (mid , j) and an optimal path from

(mid , j) to (M , N), which is done recursively.

Fig. 8A shows the two subproblems and each of their ‘‘subsubproblems’’. Note that

regardless of where the optimal path crosses the middle row, the total of the sizes of the

two subproblems is just half the size of the original problem, where problem size is

-7-

measured by the number of nodes. Similarly, the total sizes of all subsubproblems is a

fourth the original size. Letting T be the size of the original, it follows that the total sizes

of all problems, at all levels of recursion, is at most T + ½T + ¼T . . . = 2T . Since com-

putation time is directly proportional to the problem size, this approach will deliver an

optimal alignment in about twice the time needed to compute merely its score.

Fig. 8B shows a typical point in the alignment process. The initial portion of an

optimal path will have been determined, and the current problem is to report the aligned

pairs along an optimal path from (i1, j1) to (i2, j2). Fig. 9 provides detailed pseudo-code

for the linear-space alignment algorithm.

N

M

0
0

optimal midpoint

M
2

N

M

0
0

optimal path

i
1

i
2

j
1

j
2

(A) (B)

FIG. 8. (A) The two subproblems and four subsubproblems in Hirschberg’s linear-space

alignment procedure. (B) Snapshot of the execution of Hirschberg’s algorithm. Shaded

areas indicate problems remaining to be solved.

-8-

1. shared strings a1a2
. . . aM , b1b2

. . . bN

2. shared temporary integer arrays S−[0. . N], S+[0. . N]

3. procedure Align(M , N)

4. if M = 0 then

5. for j ← 1 to N do

6. write [−
b j
]

7. else

8. path(0, 0, M , N)

9. recursive procedure path(i1, j1, i2, j2)

10. if i1 + 1 = i2 or j1 = j2 then

11. write aligned pairs for maximum-score path from (i1, j1) to (i2, j2)

12. else

13. mid ←  (i1 + i2)/2
14. /* find maximum path scores from (i1, j1) */

15. S−[j1] ← 0

16. for j ← j1 + 1 to j2 do

17. S−[j] ← S−[j − 1] + σ ([−
b j
])

18. for i ← i1 + 1 to mid do

19. s ← S−[j1]

20. S−[j1] ← c ← S−[j1] + σ ([ai

−])

21. for j ← j1 + 1 to j2 do

22. c ← max{S−[j] +σ ([ai

−]), s +σ ([ai

b j
]), c +σ ([−

b j
])}

23. s ← S−[j]

24. S−[j] ← c

25. /* find maximum path scores to (i2, j2) */

26. S+[j2] ← 0

27. for j ← j2 − 1 down to j1 do

28. S+[j] ← S+[j + 1] + σ ([−
b j+1

])

29. for i ← i2 − 1 down to mid do

30. s ← S+[j2]

31. S+[j2] ← c ← S+[j2] + σ ([ai+1

−])

32. for j ← j2 − 1 down to j1 do

33. c ← max{S+[j] +σ ([ai+1

−]), s +σ ([ai+1

b j+1
]), c +σ ([−

b j+1
])}

34. s ← S+[j]

35. S+[j] ← c

36. /* find where maximum-score path crosses row mid */

37. j ← value x ∈ [j1, j2] that maximizes S−[x] + S+[x]

38. path(i1, j1, mid , j)

39. path(mid , j, i2, j2)

FIG. 9. Linear-space alignment algorithm.

-9-

Local Alignment. In many applications, a global (i.e., end-to-end) alignment of the

two giv en sequences is inappropriate; instead, a local alignment (i.e., involving only a

part of each sequence) is desired. In other words, one seeks a high-scoring path that need

not terminate at the corners of the dynamic-programming grid (Smith and Waterman,

1981). The highest local alignment score can be computed as follows:

S[i, j] ← max











0 if 0 ≤ i ≤ M and 0 ≤ j ≤ N

S[i − 1, j] + σ ([
ai

−]) if 1 ≤ i ≤ M and 0 ≤ j ≤ N

S[i − 1, j − 1] + σ ([
ai

b j
]) if 1 ≤ i ≤ M and 1 ≤ j ≤ N

S[i, j − 1] + σ ([
−
b j
]) if 0 ≤ i ≤ M and 1 ≤ j ≤ N

A single highest-scoring alignment can be found by locating the alignment’s end points

(which is straightforward to do in linear space), then applying Hirschberg’s strategy to the

two substrings bracketed by those points.

Further complications arise when one seeks k best alignments, where k > 1. For

computing an arbitrary number of non-intersecting and high-scoring local alignments,

Waterman and Eggert (1987) developed a very time-efficient method. Producing a linear-

space variant of their algorithm requires ideas that differ significantly from those pre-

sented in previous sections (Huang and Miller, 1991; Huang et al., 1990).

REFERENCES

Gotoh, O. (1982) An improved algorithm for matching biological sequences. J. Mol.

Biol. 162, 705-708.

Hirschberg, D. S. (1975) A linear space algorithm for computing maximal common sub-

sequences. Comm. ACM, 18, 341-343.

Huang, X., R. Hardison and W. Miller (1990) A space-efficient algorithm for local simi-

larities. CABIOS 6, 373-381.

Huang, X. and W. Miller (1991) A time-efficient, linear-space local similarity algorithm.

Advances in Applied Mathematics 12, 337-357.

Myers, E. and W. Miller (1988) Optimal alignments in linear space. CABIOS 4, 11-17.

Myers, E. and W. Miller (1989) Approximate matching of regular expressions. Bull.

Math. Biol. 51, 5-37.

Needleman, S. B. and C. D. Wunsch (1970) A general method applicable to the search for

similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48, 443-453.

Smith, T. F. and M. S. Waterman (1981) Identification of common molecular sequences.

J. Mol. Biol. 197, 723-728.

Waterman, M. S., T. F. Smith and W. A. Beyer (1976) Some biological sequence metrics.

Adv. Math. 20, 367-387.

Waterman, M. S. and M. Eggert (1987) A new algorithm for best subsequence alignments

with application to tRNA-rRNA comparisons. J. Mol. Biol. 197, 723-728.

