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SUPPLEMENTARY RESULTS
Knock-out of Gata1 in G1E cells and rescue in G1E-ER4 cells mimics erythroid differentiation from progenitors to orthochromatic erythroblasts
The GATA1-null G1E line shows properties of erythroid progenitors such as BFU-e, as does the G1E-ER4 line expressing a GATA1-ER hybrid protein, prior to activation with estradiol (Welch et al. 2004). The G1E and G1E-ER4 cells proliferate in the presence of growth factors erythropoietin and stem cell factor (also called KIT ligand). These large cells with large nuclei (Supplementary Fig. 1A) multiply rapidly and express genes whose products are needed for proliferation, such as Kit, Myc, and Myb (Supplementary Fig. 1B). After activation of GATA1-ER by treatment of G1E-ER4 cells with estradiol (G1E-ER4+E2), the cells change their morphology, physiology, and protein composition in a manner very similar to the differentiation of immature erythroid progenitors (BFU-e and CFU-e) into late stage erythroblasts (orthochromatic erythroblasts) (Supplementary Fig. 1) (Welch et al. 2004). These changes are driven in large part by changes in the transcription profile; expression of at least 1000 genes is significantly induced while expression of at least 1600 genes is significantly repressed (Cheng et al. 2009). Gata2 transcripts decline rapidly (Supplementary Fig. 1B) leading to a complete loss of detectable protein (Supplementary Fig. 3A). The proliferative capacity of the cells declines substantially, which is associated with a rapid decrease in the transcript levels of Kit, its downstream effector Vav1, and Myc, followed by a decline in Myb transcripts (Supplementary Fig. 1B). Transcripts for several erythroid-specific transcription factors begin to increase early in the differentiation series, followed by transcripts encoding proteins characteristic of the mature erythroid cytoskeleton and membrane, such as glycophorin (encoded by Gypa), the Band 3 anion exchanger (encoded by Slc4a1), and alpha-spectrin (encoded by Spna1), as well as the enzymes required for heme synthesis, such as ALAS2 (Supplementary Fig. 1B). Differentiating G1E-ER4+E2 cells also show characteristic switches in expression of genes encoding the transferrin receptor, with Trfr2 expression replacing that of Trfc. Hemoglobin accumulates in large amounts between 21 and 48 hr (Welch et al. 2004). 
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Supplementary Figure 1. G1E and G1E-ER4 cells are a model for erythroid differentiation. (A) Changes in morphology and erythroid gene expression after restoration and activation of the GATA1-ER hybrid protein. Top: Stained cytospins showing morphological changes (May-Grunwald-Geimsa); bottom: Diagram of commitment, differentiation and maturation during erythropoiesis. (B) Changes in gene expression (average hybridization signal to Affymetrix gene arrays) illustrating the differentiation from BFU-E to erythroblasts. The bottom two panels have different scales on the vertical axes; the red lines are plotted on the left axis and the blue lines are plotted on the right.

Further support for the validity of the G1E and G1E-ER4 system for study of erythroid differentiation is that many of the mechanistic insights, including transcription factor occupancy, obtained with it are validated when the same experiments are performed in mouse primary erythroid cells 
 ADDIN EN.CITE 
(Johnson et al. 2002; Welch et al. 2004; Vakoc et al. 2005; Tripic et al. 2009)
.

Methods for Supplementary Fig. 1

Cell culture 

G1E and G1E-ER4 cells were grown in IMDM media with 15% fetal calf serum 2U/ml erythropoietin (Amgen’s EpoGen) and 50ng/ml stem cell factor. G1E-ER4 cells were induced in the presence of 10-8 mol/L β-estradiol for 24 hours. 
May Grunwald/Giemsa staining
G1E cells collected and counted at 0hr, 3hr, 24hr, 36hr, 48hr, and 72hr were deposited on a microscrope slide using a cytospin and stained with May and Grunwald’s stain and Giemsa stain.

Expression profiles are similar between G1E and G1E-ER4+E2 0hr cells, and between 24 and 30 hrs after estradiol treatment
While the epigenetic features are compared between G1E and G1E-ER4+E2 (24 hr) cells, the Affymetrix gene expression arrays are on G1E-ER4 cells treated with estradiol for 0, 3, 7, 14, 21, and 30 hrs. To support our linking of epigenetic features in G1E cells with expression in G1E-ER4 (0 hr) cells, we compared our RNA-seq data in G1E cells with the Affymetrix data in G1E-ER4 (0 hr) cells. We used TopHat (Langmead et al. 2009; Trapnell et al. 2009) to map the RNA-seq reads and Cufflinks 


(Trapnell et al. 2010; Roberts et al. 2011) ADDIN EN.CITE  to obtain FPKMs (Fragments Per Kilobase of exon per Million fragments mapped) for RefSeq genes using mm9 RefSeq as a reference annotation. We used log2-transformed FPKM (described in Methods below) as a measure of transcript abundance for the RNA-seq data. For Affymetrix data, we used log2-transformed expression levels as described in a previous paper (Cheng et al. 2009). The log2 FPKMs from the RNA-seq data were directly compared to log2 expression levels of the microarray without any further normalization, in a manner similar to previously described methods 


(Marioni et al. 2008; Fu et al. 2009; Matkovich et al. 2010) ADDIN EN.CITE  for comparing NGS transcriptome data with microarray data. RNA-seq has a wider dynamic range and the disparity between the log2 FPKM and the microarray expression levels is most obvious for genes that are very highly expressed. We also see some genes with very low FPKM and high expression values on the microarray; it has been suggested that this could be attributed to probe-specific background hybridization on the array (Marioni et al. 2008).

To examine expression profiles in G1E and G1E-ER4, we compared the microarray expression levels for G1E-ER4 (0 hr) to RNA-seq log2 FPKMs in G1E, and we also compared the G1E-ER4+E2 (30 hr) expression levels to RNA-seq data in G1E-ER4+E2 (24 hr). We also compared these two microarray datasets to RNA-seq expression levels in CH12, a murine B cell lymphoma, using it as an “outgroup”.

Gene expression profiles show a strong positive association between G1E and G1E-ER4 (0 hr) (Pearson’s R=0.83, p-value < 2.2e-16; Supplementary Fig. 2A). Likewise, we compared RNA-seq data in G1E-ER4+E2 (24hr) cells (the time at which ChIP-seq data were obtained) with the microarray expression levels in G1E-ER4 induced for 30 hours, again to insure that our comparisons are appropriate. Again, we found a strong positive association between these two cell conditions (Pearson’s R=0.84, p-value < 2.2e-16; Supplementary Fig. 2A). A similar result was obtained for a comparison of RNA-seq data in G1E-ER4+E2 (24hr) cells with the microarray expression data for G1E-ER4+E2 (21 hr) (data not shown). Thus we can interpret the ChIP-seq data in G1E in terms of Affymetrix expression levels in uninduced G1E-ER4 (0 hr) cells, and we can interpret the ChIP-seq data in G1E-ER4+E2 (24 hr) data in terms of Affymetrix expression levels during the later times of induction (21 hr and 30 hr). 
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Supplementary Figure 2. Comparison between expression levels in G1E and G1E-ER4+E2 at different time points. These scatterplots compare log2 expression levels of all RefSeq genes on the Affymetrix array (X-axis) to the corresponding RNA-seq log2 FPKM of the stated cell line (Y-axis).

(A) log2 expression on microarray in G1E-ER4 0 hr vs. RNA-seq log2 FPKM in G1E. 
(B) log2 expression on microarray in G1E-ER4+E2 30 hrs vs. RNA-seq log2 FPKM in G1E-ER4+E2 24 hrs. 
(C) log2 expression on microarray in G1E-ER4 0 hr vs. RNA-seq log2 FPKM in CH12.

(D) log2 expression on microarray in G1E-ER4 30 hrs vs. RNA-seq log2 FPKM in CH12.

The intensity of color shading indicates the smoothed local density of points in the scatterplot and the lowess line indicates the association between the two datasets. All the associations are significant with a Pearson's correlation greater than 0.8. Well-known erythroid markers and hematopoietic transcription factors are also indicated on the plot.

We also compared the G1E-ER4+E2 microarray data at 0 hr and 30 hrs to the CH12 RNA-seq expression data. While a good number of genes appear to be relatively close in expression levels in the erythroid and lymphoma cell lines, there are clear differences in expression between the two cell lines. There is a subset of genes that are expressed below our threshold for “on” in erythroid cells but have relatively higher expression levels in CH12 cells (blue shading on the left side of Supplementary Fig. 2C and 2D). These genes may be important for the CH12 cells but are expressed at low levels in erythroid cells. We also see key erythroid genes appear in the bottom right corner of the plots (Supplementary Fig. 2C and 2D), indicating that most of the key genes needed for erythropoiesis that are expressed at high levels in erythroid cells are not expressed at comparable levels in CH12 cells. These results show that the G1E and uninduced G1E-ER4 cells are almost equivalent in expression profiles, allowing an interpretation of epigenetic features between G1E and G1E-ER4+E2 cells in terms of expression differences between uninduced and induced G1E-ER4 cells. The differences in methodology and platform (RNA-seq vs Affy expression arrays) does not preclude seeing differences in expression levels between erythroid and prepro-B-lymphocyte cell lines. 
Methods for Supplementary Fig. 2
Processing of RNA-seq data and gene expression estimation
We generated RNA-seq expression data in three cell lines, G1E, G1E-ER4 induced for 24 hours, and CH12 (a murine B cell lymphoma) with two biological replicates for each cell type. We obtained around 22 million and 25 million 36 nt single-end raw reads for the G1E-ER4+E2 cells. For G1E, we got approx. 24 million 36 nt single-end reads and 89 million 55 nt single-end reads. For CH12, we obtained approx. 30 million and 34 million 55 nt single-end reads. The 36 nt reads were generated on the Illumina GA IIx, while the 55 nt reads were generated on the Illumina Hi-Seq 2000. The raw reads were mapped to the mm9 genome using TopHat (Langmead et al. 2009; Trapnell et al. 2009), a splice junction mapper, in reference-assisted mode (-G command line option), with the mm9 RefSeq genes used as a reference annotation. The number of reported alignments for each replicate is given in Table 1 in the main text. Cufflinks 


(Trapnell et al. 2010; Roberts et al. 2011) ADDIN EN.CITE  was then used for reference-guided (using mm9 RefSeq GTF) transcript assembly and estimation of transcript abundances. Cufflinks estimates transcript abundances as FPKM values (Fragments Per Kilobase of exon per Million fragments mapped), which is analogous to RPKM (Mortazavi et al. 2008) (Reads Per Kilobase of exon per Million fragments mapped) for single-end reads. FPKM values were thus obtained for G1E, G1E-ER4+E2 and CH12. FPKMs have a wide range and for comparison with Affymetrix data, these were log2 transformed after noise addition (+0.01). Noise addition was done to avoid log-transforming FPKMs that were exactly zero. Log2 FPKM was used as the expression measure for all the RNA-seq experiments. Out of the 27,483 RefSeq transcripts reported by the RNA-seq, we used only those approx. 15,960 that were also present in the Affymetrix dataset. 
Processing of the Affymetrix data
Processing of the Affymetrix data was done as described in our previous paper (Cheng et al. 2009).
SmoothScatter Plots
The smooth scatter plots were generated using the “smoothScatter” function from the "geneplotter" library in R. The correlation tests and lowess regression were also done in R using “cor.test (method=’pearson’)” and “lowess” functions.
Known erythroid cis-regulatory modules in mouse 
We assembled a reference set of 134 erythroid CRMs from the literature (Supplementary Table 1) to compare with the epigenetic data. 
Supplementary Table 1. The 134 DNA intervals that have been shown in the published literature to either provide regulatory function (enhancers or promoters) and/or are bound by GATA1. 
	mm8 chr
	start
	stop
	Name
	PubMed ID

	chr1
	21074001
	21075500
	Tram2
	19011221

	chr1
	135889501
	135890100
	Btg2R3
	17038566

	chr1
	135899741
	135899985
	Btg2R5
	17038566

	chr1
	135908981
	135909630
	Btg2R9
	17038566

	chr1
	135915118
	135915267
	Btg2R7
	17038566

	chr10
	127133501
	127134000
	Tac3-intron7
	15123623

	chr11
	32145601
	32146000
	Hba-31HS
	15215894;19011221

	chr11
	32150701
	32151500
	Hba-26enh
	15215894;19011221

	chr11
	32156001
	32156600
	Hba-21HS
	15215894

	chr11
	32165001
	32165600
	Hba-12HS
	15215894;19011221

	chr11
	32168901
	32169500
	Hba-8HS
	15215894

	chr11
	32183201
	32183680
	Hba-a2pr
	15215894;19011221

	chr11
	32196031
	32196500
	Hba-a1pr
	19011221

	chr11
	77882182
	77882415
	miR144R2,-6.6
	18303114

	chr11
	77885953
	77886171
	miR144R1,-2.8
	18303114

	chr11
	102181151
	102181650
	Slc4a1pr
	16888089;19011221

	chr13
	23736621
	23736729
	Hist1h1cR1
	17038566

	chr15
	103079501
	103080200
	Nfe2pr
	16222338

	chr2
	27117882
	27118043
	Vav2R9
	17038566

	chr2
	27150752
	27150906
	Vav2R10
	17038566

	chr2
	27165977
	27166212
	Vav2R3
	17038566

	chr2
	27211461
	27212280
	Vav2R7
	17038566

	chr2
	27233850
	27234149
	Vav2R5
	17038566

	chr5
	75742001
	75743000
	cKit-114CRM
	19011221

	chr5
	75861371
	75861471
	cKit+5Enh/HS3
	19011221;16024808

	chr5
	75861650
	75861750
	cKitHS4
	19011221;16024808

	chr5
	75914721
	75915721
	cKit+58CRM
	19011221

	chr5
	75929695
	75930695
	cKit+73CRM
	19011221

	chr6
	38621153
	38621315
	Hipk2R37
	17038566

	chr6
	38691005
	38691150
	Hipk2R23
	17038566

	chr6
	38700889
	38701058
	Hipk2R16
	17038566

	chr6
	38755501
	38755828
	Hipk2R26
	17038566

	chr6
	38776471
	38776695
	Hipk2R27
	17038566

	chr6
	38804051
	38804580
	Hipk2R39
	17038566

	chr6
	60757501
	60758100
	Snca-intron1
	18669654

	chr6
	88081875
	88083274
	Gata2R1/-77
	17038566

	chr6
	88155264
	88155663
	Gata2R8/-3.9
	17038566;15494394

	chr6
	88156189
	88156728
	Gata2R3/-2.8
	17038566;15494394

	chr6
	88157301
	88157800
	Gata2R7/-1.8
	17038566;15494394

	chr6
	88158250
	88158350
	Gata2-1.1
	15494394

	chr6
	88159300
	88159400
	Gata2_ePR
	15494394

	chr6
	88159698
	88160352
	Gata2R4
	17038566

	chr6
	88168550
	88169094
	Gata2R5/+9.5
	17038566;19011221

	chr6
	88184613
	88185147
	Gata2R6
	17038566

	chr6
	134152118
	134152218
	Etv6
	19011221

	chr7
	63830791
	63831940
	GHP2
	18818370

	chr7
	63880783
	63881382
	GHP3
	18818370

	chr7
	63928085
	63928784
	GHP4
	18818370

	chr7
	65179317
	65179866
	GHP6
	18818370

	chr7
	65568762
	65569711
	GHP7
	18818370

	chr7
	65958140
	65958939
	GHP8
	18818370

	chr7
	66075464
	66076163
	GHP10
	18818370

	chr7
	67089442
	67090012
	GHP16
	18818370

	chr7
	73457490
	73458039
	GHP45
	18818370

	chr7
	75485377
	75485976
	GHP53
	18818370

	chr7
	79231866
	79232565
	GHP68
	18818370

	chr7
	79615826
	79616375
	GHP72
	18818370

	chr7
	80059450
	80059999
	GHP73
	18818370

	chr7
	80082367
	80083066
	GHP74
	18818370

	chr7
	80167338
	80168287
	GHP75
	18818370

	chr7
	80502738
	80503437
	GHP78
	18818370

	chr7
	80931402
	80932001
	GHP82
	18818370

	chr7
	81244767
	81245616
	GHP87
	18818370

	chr7
	81592541
	81593190
	GHP88
	18818370

	chr7
	81701865
	81702414
	GHP90
	18818370

	chr7
	83571715
	83572664
	GHP100
	18818370

	chr7
	83774344
	83775043
	GHP101
	18818370

	chr7
	84463186
	84463735
	GHP105
	18818370

	chr7
	84527296
	84528395
	GHP106
	18818370

	chr7
	89937723
	89938609
	GHP117
	18818370

	chr7
	90004358
	90004907
	GHP118
	18818370

	chr7
	97085113
	97085712
	GHP147
	18818370

	chr7
	97216699
	97217248
	GHP150
	18818370

	chr7
	97608611
	97609210
	GHP152
	18818370

	chr7
	99348891
	99349557
	GHP156
	18818370

	chr7
	99698899
	99699906
	GHP159
	18818370

	chr7
	100053286
	100053835
	GHP160
	18818370

	chr7
	100341061
	100342060
	GHP163
	18818370

	chr7
	100558604
	100559303
	GHP165
	18818370

	chr7
	100718315
	100718964
	GHP167
	18818370

	chr7
	102116150
	102117326
	GHP172
	18818370

	chr7
	102122732
	102123181
	GHP173
	18818370

	chr7
	103701543
	103702092
	GHP180
	18818370

	chr7
	103734453
	103735424
	GHP181
	18818370

	chr7
	103739415
	103740014
	GHP182
	18818370

	chr7
	103783798
	103784347
	GHP183
	18818370

	chr7
	105625596
	105626295
	GHP196
	18818370

	chr7
	108901904
	108902653
	GHP204
	18818370

	chr7
	108906030
	108906729
	GHP205
	18818370

	chr7
	110565868
	110566417
	GHP216
	18818370

	chr7
	110795265
	110795814
	GHP221
	18818370

	chr7
	110970515
	110971064
	GHP222
	18818370

	chr7
	112876275
	112876874
	GHP228
	18818370

	chr7
	115679281
	115680180
	Sox6
	19011221

	chr7
	115992052
	115992751
	GHP246
	18818370

	chr7
	120770999
	120771648
	GHP264
	18818370

	chr7
	122762100
	122763003
	GHP270
	18818370

	chr7
	123157136
	123157685
	GHP275
	18818370

	chr7
	123168780
	123169679
	GHP276
	18818370

	chr7
	125219646
	125220245
	GHP293
	18818370

	chr7
	125263196
	125263845
	GHP296
	18818370

	chr7
	125917617
	125918166
	GHP297
	18818370

	chr7
	126139222
	126139821
	GHP300
	18818370

	chr7
	126187845
	126188494
	GHP301
	18818370

	chr7
	126882327
	126882926
	GHP304
	18818370

	chr7
	127558210
	127558909
	GHP308
	18818370

	chr7
	127561561
	127562160
	GHP309
	18818370

	chr7
	128092062
	128092710
	GHP313
	18818370

	chr7
	128463342
	128463891
	GHP316
	18818370

	chr8
	83388466
	83388843
	Gypa_LCR
	8690723

	chr8
	83389658
	83389699
	Gypa_UpstPR
	8690723

	chr8
	83389700
	83389790
	Gypa_ProxPR
	8690723

	chr8
	87591501
	87592100
	Lyl1pr
	19011221

	chr8
	87791176
	87791650
	Klf1prUp
	16888089;19011221

	chr8
	87791800
	87792079
	Klf1pr
	16222338

	chr8
	125168844
	125169087
	Zfpm1R1
	17038566

	chr8
	125170453
	125171097
	Zfpm1R2
	17038566

	chr8
	125177038
	125177462
	Zfpm1R6
	17038566

	chr8
	125182716
	125183140
	Zfpm1R21
	17038566

	chr8
	125187200
	125187499
	Zfpm1R18
	17038566

	chr8
	125192744
	125193393
	Zfpm1R4
	17038566

	chr8
	125193736
	125193890
	Zfpm1R29
	17038566

	chr8
	125199353
	125199752
	Zfpm1R13
	17038566

	chr8
	125201028
	125201283
	Zfpm1R24
	17038566

	chr8
	125205561
	125205825
	Zfpm1R10
	17038566

	chr8
	125207879
	125208082
	Zfpm1R19
	17038566

	chr8
	125208813
	125209292
	Zfpm1R14
	17038566

	chr8
	125216636
	125216805
	Zfpm1R27
	17038566

	chrX
	7125303
	7125550
	Gata1-0.75
	12485164

	chrX
	7149641
	7150740
	Gata1-mHS25
	15265794

	chrX
	145890467
	145890668
	Alas2R1
	17038566

	chrX
	145905381
	145905722
	Alas2R3
	17038566

	chrX    
	7120939
	7121989
	Gata1int
	15265794

	chrX    
	7128349
	7128606
	G1HE
	15265794


Epigenetic features during erythroid differentiation determined by sequence census methods

Epigenetic features during erythroid differentiation were measured by ChIP-seq and other sequence census methods (Wold and Myers 2008), utilizing the Illumina Genome Analyzer II or HiSeq platform (Supplementary Table 2). After mapping reads to the mm8 assembly of the mouse genome, peaks were called using the program MACS (Zhang et al. 2008) for transcriptional factors, or F-seq (Boyle et al. 2008) for DNase HS. 

Supplementary Table 2. Transcription factor occupancy, chromatin features, and mRNA content interrogated by sequence census methods

This table differs from Table 1 in the text in that it includes information about replicates, restricts the comparisons with DHSs to the top 100,000, and compares relevant features to previously published ChIP-chip data. Cells that are not applicable for a given feature – characteristic pair are gray.
	Feature
	Cell line
	Replicate
	Number of Illumina reads
	Number of mapped reads
	Number of peaks*
	Overlap with top 100K DNase HSs
	Overlap of ChIP-chip on chr7 (ChIP-chip peaks)

	DNase HS
	G1E
	1
	66,148,078
	43,351,446
	100,000
	100%
	

	
	G1E-ER4+E2
	1
	55,421,190
	38,899,970
	100,000
	100%
	

	GATA1
	G1E-ER4+E2
	1
	32,329,253
	23,858,147
	11,491
	64.5%
	2,443/3,533 (genome)**

	
	
	2
	120,431,030
	106,381,508
	
	
	

	
	Ter119+
	1
	37,209,660
	33,444,157
	8,867
	
	

	
	
	2
	91,981,872
	77,520,334
	
	
	

	TAL1
	G1E
	1
	14,965,148
	10,760,640
	8,726
	70.8%
	203/top249***

	
	
	2
	24,252,830
	22,577,151
	
	
	

	
	G1E-ER4+E2
	1
	23,919,114
	6,933,291
	5,572
	68.6%
	111/top205

	
	
	2
	11,280,758
	7,735,598
	
	
	

	
	Ter119+
	1
	37,247,380
	35,388,682
	4,976
	
	

	
	
	2
	119,633,592
	95,574,392
	
	
	

	GATA2
	G1E
	1
	16,192,739
	12,493,737
	4,904#
 
	64.1%
	16/43

	
	
	2
	15,073,158
	10,911,673
	
	
	

	
	G1E-ER4+E2
	1
	12,627,079
	10,029,311
	
	
	

	
	
	2
	14,941,906
	10,798,786
	
	
	

	H3K4 me1
	G1E
	1
	34,088,173
	28,752,309
	
	
	

	
	
	2
	49,615,724
	45,870,038
	
	
	

	
	G1E-ER4+E2
	1
	24,839,073
	21,061,646
	
	
	

	
	
	2
	115,103,341
	87,403,706
	
	
	

	H3K4 me3
	G1E
	1
	35,334,197
	30,571,979
	
	
	

	
	
	2
	95,699,196
	81,612,757
	
	
	

	
	G1E-ER4+E2
	1
	11,447,979
	9,557,534
	
	
	

	
	
	2
	103,282,886
	87,403,706
	
	
	

	H3K27me3
	G1E
	1
	22,324,068
	15,743,481
	
	
	

	
	
	2
	16,593,566
	13,624,995
	
	
	

	
	G1E-ER4+E2
	1
	21,981,688
	15,835,999
	
	
	

	
	
	2
	115,996,679
	106,144,389
	
	
	

	H3K9 me3
	G1E
	1
	58,151,562
	50,221,498
	
	
	

	
	
	2
	90,121,800
	75,590,434
	
	
	

	
	G1E-ER4+E2
	1
	35,454,170
	18,096,462
	
	
	

	
	
	2
	94,462,484
	83,460,131
	
	
	

	mRNA
	G1E
	1
	24,181,696
	33,985,321※
	
	
	

	
	
	2
	89,372,620
	98,490,013※
	
	
	

	
	G1E-ER4+E2
	1
	22,398,068
	34,639,307※
	
	
	

	
	
	2
	25,220,176
	39,309,475※
	
	
	

	
	CH12
	1
	30,441,197
	42,932,074※
	
	
	

	
	
	2
	34,576,518
	48,077,088※
	
	
	


* Peaks were called on the combined reads. Numbers of peaks for each replicate are listed in Supplementary Table 3.

** Genome: the comparison is with the 3, 533 ChIP-chip peaks found previously (Cheng et al. 2009).
top***: The ChIP-chip peaks for the TAL1 in each cell line was sorted according to the ChIP-chip signals at the peaks. The number of ChIP-seq peaks from the ChIP-chip interrogating region was determined, and the same number of ChIP-chip peaks from the ones with top signals were investigated to see how many overlap with ChIP-seq peaks.
※ The numbers of alignments instead of mapped reads are listed for RNA-seq data. 
The GATA1-null G1E line has no GATA1 detectable in a Western blot but the G1E-ER4 line produces a hybrid GATA1-ER protein (Supplementary Fig. 3A) (Gregory et al. 1999), hence GATA1 ChIP-seq was done only in G1E-ER4 cells treated with estradiol for 24 hr (Cheng et al. 2009). 

TAL1 is a basic helix-loop-helix protein (bHLH) required for several hematoietic lineages including erythroid cells. Not only does it bind as a heterodimer with other bHLH proteins, but it also can form a pentameric complex with GATA1, LMO2, and LDB1 (Wadman et al. 1997). In order to investigate its role in the GATA1-dependent regulation of gene expression, we determined its location genome-wide by ChIP-seq in progenitor and differentiating cells. The amount of TAL1 protein is similar in both G1E and G1E-ER4+E2 cells (Supplementary Fig. 3A), and indeed we find about 7000 and 5600 peaks of occupancy, respectively, in the two cell lines (Supplementary Table 2). These peaks show substantial overlap not only with ChIP-chip data (Supplementary Table 2) (Tripic et al. 2009) from the same cell lines, but also with TAL1 ChIP-seq datasets from mouse primary erythroid cells 


(Kassouf et al. 2010) ADDIN EN.CITE  and a primitive hematopoietic cell line (Wilson et al. 2009) (Supplementary Fig. 4B). Thus the new ChIP-seq data reported here are of high quality.

The transcription factor GATA2 is similar to GATA1 in its DNA binding domain and binds to the same recognition sequence in vitro, WGATAR. It is produced in the megakaryocyte-erythroid progenitor (MEP, Supplementary Fig. 1A) and in erythroid progenitors, declining in abundance during erythroid differentiation (Supplementary Fig. 1B). At erythroid CRMs that behave as molecular switches, GATA2 can be exchanged for GATA1 
 ADDIN EN.CITE 
(Martowicz et al. 2005; Grass et al. 2006)
. Western blots show that GATA2 is present in G1E cells but not detectable in estradiol-treated G1E-ER4 cells (Supplementary Fig. 3A); thus GATA2 ChIP-seq is expected to produce peaks only in the G1E cells. The antibody used against GATA2 binds to predominantly one protein in a Western blot, but the ChIP-seq results have a lower signal to noise ratio than the ChIP-seq data on GATA1 and TAL1. Thus accurately calling peaks is quite challenging. We confined our analysis to a subset of the GATA2 peaks in G1E cells that are supported by at least one other independent assay and hence should be most reliable. In particular, we adopted a novel Bayesian-like method for peak calling that included other datasets on erythroid transcription factor occupancy as priors (see Methods), and then we chose only GATA2 peaks that overlapped with DNase hypersensitive sites in G1E cells (4,904 GATA2 peaks). This set should be considered a lower bound estimate of the number of GATA2 occupied segments (hereafter referred as OSs) in G1E cells.

Accessibility of DNA in chromatin to enzymes such as DNase is a well-known marker for cis-regulatory regions around actively transcribed genes (Gross and Garrard 1988). We used DNase-seq 
 ADDIN EN.CITE 
(Crawford et al. 2006)
 to reveal positions of DNase-accessible chromatin in G1E and G1E-ER4+E2 cells. 

ChIP-seq methods were also used to map the levels of four histone modifications on nucleosomes. These are monomethylation of lysine 4 of histone H3 (H3K4me1), associated in general with active chromatin and enhancers 
 ADDIN EN.CITE 
(Birney et al. 2007; Heintzman et al. 2007)
, trimethylation of lysine 4 on histone H3 (H3K4me3), associated with active gene promoters 
 ADDIN EN.CITE 
(Birney et al. 2007; Heintzman et al. 2007)
, trimethylation of lysine 27 of histone H3 (H3K27me3), catalyzed by the Polycomb repressor complex 2 
 ADDIN EN.CITE 
(Francis et al. 2004; Lavigne et al. 2004; Levine et al. 2004; King et al. 2005)
 and associated with repressed chromatin, and trimethylation of lysine 9 of histone H3 (H3K9me3), catalyzed mainly by SUV39H1/2 


(O'Carroll et al. 2000; Peters et al. 2003) ADDIN EN.CITE  and ESET 


(Yang et al. 2002; Wang et al. 2003) ADDIN EN.CITE , and associated with heterochromatinization and gene repression via recruiting HP1 proteins 


(Lachner et al. 2001) ADDIN EN.CITE . 

High quality of the ChIP-seq data
The reliability of the genome-wide epigenetic mapping is supported by several lines of evidence. The antibodies are highly specific (Supplementary Fig. 3A). The number of mapped reads is very high, with over 6 million reads for each sample and over 100 million reads for some (Supplementary Table 1). The distribution of ChIP-seq read counts in the peaks is much higher than the background, with even higher read counts in the peaks that overlap with DNase HSs (Supplementary Fig. 3B). The peaks overlap substantially with previously published ChIP-chip data on mouse chromosome 7 (Supplementary Table 2), DNase HSs (Table 1 in main text), and a reference set of 134 erythroid CRMs (Table 1 in main text). 

[image: image3.emf]
Supplementary Figure 3. Quality assessments on ChIP-seq data in erythroid cells. (A) Western blots showing GATA1, GATA2, TAL1, and CTCF in G1E, G1E-ER4+E2 (treated with estradiol for 24 hr), murine erythroleukemia (MEL), and CH12 (prepro-B-lymphocyte) cells. (B) The distribution of GATA1, GATA2, TAL1 ChIP-seq read counts at their OSs with (green) or without (purple) overlap with DHS, and at the random sites on the genome (grey), in G1E or G1E-ER4+E2 cell line, shown by box plots. The proportions of OSs that intersect with DHS are shown by the pie charts. 
Methods for Supplementary Fig. 3
Immunoblotting 

Cells were harvested, washed twice with PBS by centrifugation, resuspended in 10 mM Tris-HCl, pH 8.0, 10 mM NaCl, 0.2% NP40, and a protease inhibitor cocktail, extracted on ice for 10 min, and sonicated briefly. Extracts were cleared by centrifugation (10,000 g, 5 min). For immunoblotting, proteins on gels were transferred to PVDF using the tank transfer method (Bio-Rad, Hercules, CA), and the membrane was blocked with 5% nonfat dry milk in TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% Tween 20) and incubated overnight at 4°C with primary antibodies [rabbit anti-CTCF, 1:3000 (07-729, Millipore, Temecula, CA); rat anti-GATA1, 1:5000 (sc-265, Santa Cruz Biotechnologies, Santa Cruz, CA); rabbit anti-GATA2, 1:5000 (sc-9008 Santa Cruz Biotechnologies, Santa Cruz, CA); and goat anti-TAL1, 1:500 (sc-12984, Santa Cruz Biotechnologies, Santa Cruz, CA)] in 5% dry milk/TBST. The membrane was washed with 20 mM Tris-HCl, pH 7.5, 60 mM NaCl, 2 mM EDTA, 0.4% SDS, 0.4% Triton X-100, 0.4% deoxycholate, and TBST, reblocked for 30 min at room temperature, incubated as appropriate with anti-rabbit, anti-rat, or anti-goat antibody conjugated to horseradish peroxidase (1:5000 in dry milk/TBST, 2 hr at room temperature), and washed again. Antibody complexes were detected using ECL Plus (Amersham Biosciences). 


Another quality check is analyzing biological replicates (Supplementary Table 2). The peaks called between replicates for transcription factor ChIP-seq results can be compared by simple overlap. We find a high percentage of peaks overlap (Supplementary Table 3). The lower amounts of overlap occur when one replicate has many more peaks than the other. Future effort will be aimed at resolving the several contributors to the differences, including different sequencing platforms (Illumina GAIIx versus HiSeq), differences in numbers of reads, and sampling differences.

Supplementary Table 3. Overlaps among peaks of replicate samples.
	Transcription factor
	Cell type
	Replicate
	Number of peaks
	Number that overlap
	% overlap

	GATA1
	G1E-ER4+E2
	1
	14,222
	8656
	61

	
	
	2
	12,781
	8376
	66

	
	Ter119+
	1
	8,483
	4760
	56

	
	
	2
	5,277
	4861
	92

	TAL1
	G1E
	1
	6,930
	5879
	85

	
	
	2
	8,216
	5871
	71

	
	G1E-ER4+E2
	1
	5,869
	1801
	31

	
	
	2
	2,260
	1792
	79

	
	Ter119+
	1
	4,632
	3229
	70

	
	
	2
	5,063
	3194
	63


Note: Peak intervals from MACs were intersected, requiring at least one bp overlap. The percentage of peaks in each replicate that overlap with the other replicate are reported.

The GATA1 ChIP-seq peaks were extensively validated by quantitative PCR (Cheng et al. 2009). They overlap substantially not only with ChIP-chip data from the G1E-ER4+E2 cells, but also with GATA1 occupancy peaks determined in murine erythroleukemia (MEL) cells using a biotin tagging technique 


(Soler et al. 2010) ADDIN EN.CITE , despite the greater amount of GATA1-ER in the G1E-ER4 cell line compared to MEL (Supplementary Fig. 3A). The ChIP-seq read data from the Soler paper 


(Soler et al. 2010) ADDIN EN.CITE  were downloaded from: http://www.ebi.ac.uk/ena/data/view/ERA000161. The data was then processed through our ChIP-seq analysis pipeline on Galaxy 


(Blankenberg et al. 2010; Goecks et al. 2010) ADDIN EN.CITE . The FASTQ reads were first groomed from Illumina quality score format to Sanger quality score format. The reads were then mapped using Bowtie. The experimental as well as the control reads were then analyzed using MACS to determine significant binding locations. This resulted in 10,948 peaks from the induced experiment, and 13,554 from the non-induced experiment. These proposed binding locations for GATA1 were compared with the GATA1 occupied segments from our own experiments. Pairwise intersections between our set of GATA1 peaks and the two sets of GATA1 peaks from the Soler paper were performed on Galaxy. For the induced experiment, 4,223 or 37% of our 11,491 GATA1 occupied segments overlapped with their 10,948 (Supplementary Fig. 4A). Similarly 4,992 or 43% of our segments overlap with the 13,554 segments from the non-induced experiment of Soler et al. 


(2010) ADDIN EN.CITE .
We also compared our TAL1 peaks with the TAL data from other labs in other cell lines, as shown in Supplementary Fig. 4B. The TAL1 peaks in liver erythroid progenitors reported in Kassouf et al. 


(2010) ADDIN EN.CITE  were categorized based on their intersections (for at least one nucleotide) with the TAL1 peaks in only G1E cell line, only G1E-ER4+E2 cell line, both cell lines, or neither cell line. The categorization was shown by a pie chart. The same was done to the TAL1 peaks in primitive hematopoietic cells reported in Wilson et al. (2009).
[image: image4.emf]
Supplementary Figure 4. Overlap of ChIP-seq datasets with previously published data from other erythroid cells. (A) Overlap of GATA1 OSs in G1E-ER4+E2 with the GATA1 peaks from MEL cells. The GATA1 OS in G1E-ER4+E2 cells, non-induced MEL cells, and induced MEL cells are represented by red, yellow, and pink disks, respectively. (B) Proportions of TAL1-occupied segments from Ter119- erythroid progenitors (Porcher et al. 2010) and from primitive hematopoietic cells (Wilson et al. 2009) that overlap with our TAL1 OSs in G1E only, G1E-ER4+E2 only, and in both cell lines.
Additional illustrative examples of epigenetic features around GATA1-responsive genes


In addition to the examples shown in Figure 2 in the main text, we show the epigenetic features around an additional induced gene (Alas2), an additional repressed gene (Rgs18), and an induced gene (Btg2), which does show a shift in the chromatin state profile upon induction by GATA1 (Supplementary Fig. 5). In contrast to the majority of induced genes, the chromatin states for Btg2 change from more repressive to more activating states upon activation of GATA1-ER in G1E-ER4+E2 cells. The body of this small gene acquires more H3K4me3, and the flanking regions shift from domination by the Polycomb mark H3K27me3 to substantial levels of H3K4me1. However, the pattern of DNase hypersensitivity changes little, showing that the chromatin is accessible prior to induction.
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Supplementary Figure 5. Additional examples of the epigenetic landscape around GATA1-responsive genes: (A) the induced gene Alas2, (B) the repressed gene Rgs18, (C) the induced gene Btg2. The Btg2 locus as an example of induction accompanied by changes in chromatin modifications as well as changes in transcription factor profiles. 

Chromatin states distinguished by histone modifications 
We employed a genome wide segmentation program based on multivariate HMM (Ernst and Kellis 2010) to segment the genome into different states determined by the distribution of the four examined histone modifications. We have tried different number of states (six state shown in the main text) and found that the model with six states have clearly different emission properties for the four histone modifications and are most parsimonious without redundant states that have similar emission scores with one another (Supplementary Fig. 6).
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Supplementary Figure 6. Comparison of six vs 18-state segmentation of the mouse erythroid genome based on chromatin modifications. (A) The 18 chromatin states emitted by the model computed by the multivariate HMM; the emission spectrum for the four modifications and the “input” DNA is listed in the matrix. (B) The six-state segmentation.

The K4me3me1 and K4me1 states (1 and 2) are expected to contain mostly open, accessible chromatin, and a comparison with the DNase-seq data showed that indeed the DNA in these two states are enriched in the frequency of DNase hypersensitive sites (DHSs) (Supplementary Fig. 7A). We predicted that the low signal state 6 reflects inaccessible DNA in chromatin, and indeed the DNA in this state is significantly depleted for DHSs (Supplementary Fig. 7A). Interestingly, despite the fact that both the H3K27me3 mark is associated with transcriptionally inactive chromatin, the DNA in this chromatin state is actually enriched in DHSs. This DNase accessibility could result from the dynamic maintenance of the Polycomb (H3K27me3) modification, e.g. removing and adding methyl groups. These enrichments and depletions were seen for DHSs in both the progenitor and differentiating cells. 

The bulk of the erythroid genome is covered by state 6; it has little signal for any of the four histone modifications. The other states cover only small portions of the erythroid genome, ranging from 0.7% to 9% (Fig. 3C in the main text). The amount of the genome in each state does not change dramatically between the two cells types. For the entire genome, we find that DNA in the K4me3me1 chromatin state 1 and the low signal state 6 change little between G1E and G1E-ER4+E2 cells (Supplementary Fig. 7B). Some of the DNA in the K4me1, bivalent, K27me3, and K9me3 states does change to another state upon activation of GATA1-ER, but about half of the DNA in each state does not change. In fact only 18.8% of the 200 bp windows in the genome change state during this differentiation process. This indicates that the profound changes in gene expression, morphology, physiology in this model of erythroid differentiation occur without massive alterations in chromatin structure.
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Supplementary Figure 7. Limited change during differentiation in segmentation of the mouse erythroid genome based on chromatin modifications and in DNase hypersensitivity. (A) Relative enrichment (positive) or depletion (negative) of the top 100,000 DHSs in each state in both cell lines. (B) Changes between G1E cells (left disks) and G1E-ER4+E2 cells (right disks) for each chromatin state computed by the segmentation program. 

Methods for Supplementary Fig. 7
DNase accessibility of chromatin states
The sizes of all segments in each of the six states were calculated, and the total number of nucleotides, 2.6×109, covered by all segments was used as an approximation of the portion of the mouse genome that was accessible to sequencing. The proportion of this accessible genome that is covered by each of the six chromatin states was calculated and used to generate an expected number of DNase HS that would occur within the segments of each state, assuming that the DNase HS were distributed randomly throughout the accessible portion of the genome. Since DNase HS are on average hundreds of nucleotides long, they can often cover the boundary of two chromatin states. Therefore, the center of each DNase HS was examined, in order to uniquely associate each DNase HS with one of the six chromatin states. The significance of difference between the expected and observed number of DNase HS associated with each of the six chromatin states was examined using a chi-square test. This showed that the probability of the DNase HS being randomly distributed in the observed ratios is much less than 0.001 in all cases. Plotted are the log2 values of the observed/expected ratios for each chromatin state.

Changes in genome coverage by chromatin states 

To examine how the chromatin states distribute on mouse genome in G1E model and how they change from G1E to G1E-ER4+E2, we calculated the fraction of the mapped genome regions falling in each state in each cell line, and intersected the segments in each state between the two cell lines to find out the numbers of nucleotides in the segments of each state that are in only G1E, only G1E-ER4+E2 or both cell lines.
Chromatin states distinguish active from silenced genes but not induced from repressed

The segmentations based on histone modification status were used to determine the profile of chromatin states for each gene neighborhood. The chromatin state profiles show limited change upon differentiation of G1E-ER4 cells (Fig. 4 in the main text). 

To test whether changes in the six identified chromatin states are associated with changes in gene expression during differentiation of G1E-ER4 cells, we characterized the co-variation in the chromatin state profiles in terms of orthogonal components using principal component analysis (PCA). Standardizing the proportion of the gene neighborhood in the six states and running two PCAs on G1E and G1E-ER4+E2 reveals that the first two principal components account for 66% of the variation in both cases (Supplementary Table 4). The loadings for the six states are similar (Supplementary Table 4), implying that differentiation of cells from G1E to G1E-ER4+E2 is not accompanied by large scale variation in the chromatin state profile of genes. Further, visualization of the first two components from both PCAs, i.e., PC1G1E-PC1G1E-ER4+E2 or PC2G1E-PC2G1E-ER4+E2plane, reveals that a majority of genes fall along the diagonal direction indicating that they do not shift from one state in G1E to another in G1E-ER4+E2.

Supplementary Table 4. PCA on proportions of gene neighborhood in chromatin state in G1E and G1E-ER4+E2

	G1E
	
	
	
	

	
	Comp.1
	Comp.2
	Comp.3
	Comp.4

	Proportion of Variance
	0.372
	0.283
	0.181
	0.104

	State1_Loading
	0.532
	0.315
	0
	0.744

	State2_Loading
	0.521
	0.372
	0
	-0.660

	State3_Loading
	0.317
	-0.463
	0
	0.812

	State4_Loading
	0
	 -0.681
	0.160
	-0.520

	State5_Loading
	-0.177
	0
	-0.924
	0

	State6_Loading
	-0.555
	0.291
	0.344
	0.246

	G1E-ER4+E2
	
	
	
	

	
	Comp.1
	Comp.2
	Comp.3
	Comp.4

	Proportion of Variance
	0.372
	0.283
	0.181
	0.104

	State1_Loading
	0.546
	0.265
	0
	0.752

	State2_Loading
	0.554
	0.309
	0
	-0.648

	State3_Loading
	0.248
	-0.515
	0.110
	0.804

	State4_Loading
	0
	-0.681
	0.170
	-0.530

	State5_Loading
	-0.106
	0
	-0.933
	0

	State6_Loading
	-0.568
	0.319
	0.293
	0.244
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Supplementary Figure 8. Biplot from PCA on chromatin states in G1E and G1E-ER4+E2:  Two PCAs were performed on the proportion of the gene neighborhood in the six states determined by the multivariate HMM in both G1E and G1E-ER4+E2 cell lines. The results were visualized in a two dimensional plane for (A) the first PCA direction in G1E-ER4+E2 versus the first PCA direction in G1E, and (B) the second PCA direction in G1E-ER4+E2 versus the second PCA direction in G1E. The colored circles depict the projection of all genes in the plane spanned by the previously mentioned axes. A total of 15,960 genes have been partitioned into four categories colored by their expression response, namely up-regulated (red, n = 2773), down-regulated (blue, n = 3555), mildly responsive (grey, n = 6151), and nonresponsive (yellow, n= 3481).

In the main text, coverage by the chromatin states is evaluated by the fraction of the gene neighborhood. This fraction is, of course, dependent on the length of each gene neighborhood. However, the trends observed are robust to this effect of gene length. To remove the effect, we simply computed the number of nucleotides in each state for each gene neighborhood, plotting the values as stacked bars for 15,960 genes (Supplementary Fig. 9). Most genes are less than 100 kb in length, so that was used as the ceiling for the graph. The patterns of chromatin state coverage are quite similar to those obtained when the fractional coverage was computed (main text). In particular, the largely silent partition is dominated by the low signal state 6, the H3K9me3 marked state 5, and the Polycomb state 4, largely in different groups of genes. The subset of very low expressed genes with notable coverage by the H3K4 methylated states 1 and 2 is still apparent. Genes whose expression level exceeds the “off” threshold show similar patterns of coverage by chromatin states, although there is a significant trend for increased states 1 and 2 with increased expression. The similarity in results between this analysis and the fractional coverage in the main text shows that the principal conclusions are not dependent on gene length.
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Supplementary Figure 9. Coverage of gene neighborhoods by chromatin states, evaluated as the number of nucleotides. This figure was graphed in the same way as Fig. 4 in the main text, except that the number of nucleotides in each gene neighborhood covered by each chromatin state was used instead of the fraction. The graph is limited to a length of 100,000 bp; gene neighborhoods shorter than this are filled in with white.

In the main text, we analyze the proportion of each gene neighborhood covered by each chromatin state for all genes. Since the genes that are significantly regulated after GATA1 induction account for less than half of all the genes, we needed to show that the trends seen for all genes also apply to the regulated genes. Thus, we ran the same analysis on a subset of genes restricted to those that not only respond significantly to GATA1 activation but also have GATA1 occupancy in their neighborhood (GATA1 locally regulated genes). As shown in Supplementary 

Fig. 10, we can see the genes in the low expression category are restricted to the “antagonists” group only (Fig. 4 in the main text). This is consistent with Fig. 3D in the main text which shows that GATA1 occupancy is mostly associated with activating states. Except this, the pattern of this figure is quite similar with the figure that contains all of the genes on the genome, which shows that our conclusion that the chromatin states distinguish active from silenced genes but not induced from repressed, and they rarely change dramatically after differentiation induced by GATA1 restoration, still holds for the genes that are locally regulated by GATA1 occupancy.
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Supplementary Figure 10. Coverage of GATA1 locally regulated gene neighborhoods by chromatin states. This figure was graphed in the same way as Fig. 4 in the main text, except that only the responsive genes which have at least one GATA1 occupied segment in the neighborhood were used instead of all genes. 

When the genes in each partition are considered as a group, the aggregated distributions also show a very large change between silenced and expressed genes. The proportion of each gene neighborhood in each state was computed, and then normalized by the genome-wide coverage of each state. Transforming these values to the log2 allows us to see enrichment (>0) or depletion (<0) for each state. When genes in each bin of expression level are examined in this way, we see that the nonexpressed genes are substantially depleted in the H3K4 methylated states 1 and 2 (Supplementary Fig. 11). The silenced genes are slightly enriched in state 6. This supports the earlier inference that the nonexpressed genes are largely in repressed chromatin. As gene expression level increases, the enrichment for the H3K4 methylated states 1 and 2 increases somewhat, with concomitant depletion of state 6. However, the most dramatic difference is between the silenced and expressed levels. 
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Supplementary Figure 11. Distribution of enrichment (>0) or depletion (<0) of the normalized proportion of a gene neighborhood for the six states defined by the HMM model. The genes were separated into six groups in the same way as in Fig. 4 in the main text. The normalized proportion of state coverage of each gene neighborhood was calculated as the fraction falling in each state divided by the percentage of the whole genome covered by the corresponding state. Box plots plotted the log 2 transformed values. A small dummy value was added to the numerator to avoid zeros. A star in each box indicated the mean of the plotted values. Student’s t-test was conducted between each pair of boxes with the same color in the neighboring partitions. There is significant difference between the means for all compared pairs.

No strong association between the changes of histone modifications and the changes of gene expression levels
The chromatin state profiles are determined by the predominant histone modifications in a binary mode (presence or absence of signals). We also examined the amount of each histone modification in intervals containing TSSs, using a clustering approach to search for a relationship between histone modification level and expression level. For all 15,960 genes, we computed the mean counts of mapped reads for each of the histone modifications in G1E-ER4+E2 cells in 4 kb intervals of DNA centered on the annotated TSS. The TSS intervals were then grouped by similarity in patterns of histone modifications using k-means clustering (k=7; Supplementary Fig. 12). The first four clusters were enriched for H3K4me3, with the level of methylation declining from cluster 1 to cluster 4. Clusters 5 and 6 were enriched for methylation of H3K27 and H3K9, respectively, and cluster 7 was largely devoid of the studied histone modifications. Comparison with the distribution of expression levels in G1E-ER4+E2 cells (30 hr after activation, Supplementary Fig. 12) across the seven clusters confirmed that the level of H3K4me3 in the TSS had a strong positive correlation with the level of expression (R= 0.70; p< 2.2e-16). 
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Supplementary Figure 12. Relationship between levels of epigenetic features around the TSS and expression. The left panel shows heatmaps of the average amounts of H3K4me1, H3K4me3, H3K27me3 and H3K9me3 modifications in G1E-ER4+E2 cells, in 4 kb intervals centered on the TSS of each of 15,960 genes. The histone modification profiles are placed into 7 groups by k-means clustering. The right panel shows the distribution of gene expression levels (G1E-ER4 cells treated with estradiol for 30 hr) for the genes associated with each group of TSSs. The box-plots have a line across the box for the median, the box extends from the 25th to the 75th percentiles, and the whiskers extend to 1.5 of the interquartile range.

However, no significant correlation was found for the changes in histone modification and changes in expression (Supplementary Fig. 13). After computing the ratios of the histone modification signals in G1E and G1E-ER4+E2 cells and normalizing (see Methods in following text), the values for the normalized ratios were used for a similar k-means clustering. The clusters based on changes in modification levels present more variability than those generated based on signal in one cell type, and the changes in expression levels are not significantly different for the genes between clusters (Supplementary Fig. 13).
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Supplementary Figure 13. No strong association between changes of histone modifications around the TSS and the changes of gene expression levels. K-means clustering (k=7) of the changes of the four histone modifications at the 4kb TSS intervals is shown by heatmap on the left, and the distribution of gene expression level changes in corresponding clusters is shown by box plots on the right. The change of each histone modification between G1E and G1E-ER4+E2 cell lines is calculated as normalized log2 of the ratio of the ChIP-seq read counts at the same genomic positions.
Methods for Supplementary Figs. 12 and 13
Normalization of the ratios of the ChIP-seq read counts between G1E and G1E-ER4+E2 cell lines 

The normalization is based on published approaches for the normalization of ChIP-seq or ChIP-chip data between different experiments. First, the raw count in every 10bp window was divided by the total number of mapped reads, denoted as ER4rpm= er4/N_er4 and G1E rpm= g1e/N_g1e, where er4 and g1e are the raw counts of reads (after extended by the length of sequenced DNA) in G1E-ER4+E2 and G1E cell lines respectively, and N_er4 and N_g1e are the total number of mapped reads in millions in the two cell lines. Then magnitude (M) and amplitude (A) were calculated based on the log 2 transformed adjusted counts in 100,000 randomly selected bins from one chromosome, denoted as M= log2(ER4 rpm /G1E rpm) and A= 0.5×(log2(ER4 rpm) + log2(G1E rpm)). The mean of the magnitude was estimated by fitting loess regression of M versus A in R (version 2.10.0). Then the fitted mean was subtracted from M, which resulted in the first adjusted M (adjM), denoted as Mean= loess(M ~ A) and adjM= M- Mean. The variance of the magnitude was estimated by fitting loess regression of adjM square versus A and then taking the square root. Then adjM was divided by the estimated variances, which resulted in the secondly adjusted M (adjM’), denoted as Variance= squareroot(loess(adjM2 ~ A)) and adjM’= adjM/Variance. adjM’ is the normalized ratio between the two cell lines and was used to represent the change of histone modification level after GATA1 restoration.

More detail on “Interplay between GATA1 and TAL1 is a major determinant of induction versus repression”

Several recent studies have reported that genes induced by GATA1 tend to be jointly occupied by both GATA1 and TAL1 
 ADDIN EN.CITE 
(Wozniak et al. 2008; Cheng et al. 2009; Tripic et al. 2009)
. With our datasets of epigenetic features in the two cell lines, we can examine the dynamics of occupancy and determine how frequently this paradigm holds for induction. To illustrate the approach, consider the GATA1-induced gene Zfpm1, which encodes the protein FOG1. In G1E cells, this gene is bound by GATA2 at nine sites (all internal to the gene), and TAL1 co-occupies all but perhaps two of them (Supplementary Fig. 14A). After GATA1-ER is restored and activated in G1E-ER4+E2 cells, GATA1 replaces GATA2 at all of these sites while retaining TAL1. Additional binding by GATA1 and TAL1 (e.g. downstream of the gene) represents de novo recruitment. 

In contrast, the repressed gene Kit illustrates the loss of TAL1 after GATA1 binds. Confirming previous reports 
 ADDIN EN.CITE 
(Jing et al. 2008; Tripic et al. 2009)
, our ChIP-seq data show occupancy by GATA2 and TAL1 of the -114 kb CRM and a CRM close to the TSS in G1E cells (Supplementary Fig. 14B). These interactions lead to formation of a chromatin loop between the two DNA segments and expression of Kit (Jing et al. 2008). When GATA1 is restored and activated, GATA1 replaces GATA2 and TAL1 dissociates from these CRMs, and GATA1 binds to other CRMs internal to the gene. The GATA1-occupied DNA segments form a different chromatin loop associated with gene repression (Jing et al. 2008). Our new ChIP-seq datasets also reveal additional CRMs further upstream from the Kit gene, which show a similar pattern of co-occupancy by GATA2 and TAL1 when the gene is expressed and replacement by GATA1 when the gene is repressed. 
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Supplementary Figure 14. Dynamics of the epigenetic landscape for (A) 82.5 kb around Zfpm1, a gene that is induced immediately after restoration of GATA1, and (B) 625 kb around Kit, a gene that is repressed after restoration of GATA1. The purple rectangles on the top line mark known CRMs identified in Zfpm1 (Wang et al. 2006) and in Kit 
 ADDIN EN.CITE 
(Jing et al. 2008; Tripic et al. 2009)
. Underneath the gene structures are indicators of induction (red) or repression (blue). This is followed by tracks showing the normalized number of mapped reads for each of the epigenetic features in both G1E and G1E-ER4+E2 cell lines. At the bottom is a diagram interpreting the dynamic changes in transcription factor binding at the several CRMs in and around each gene.

The main text explains how we then took a similar approach to examine the patterns of transcription factor occupancy for all mouse genes in these erythroid cell lines. The analysis there focuses on the 100 most strongly and weakly responsive genes. A similar analysis conducted on all the 2,773 induced, 3,555 repressed, and 3,481 nonresponsive genes showed the same trends as are seen for the highly regulated genes, as detailed below. 

We observe that 69.1% of the induced genes, 49.4% of the repressed genes, and 25.3% of the non-responsive genes have GATA1 in the gene neighborhood (Supplementary Fig. 14, group (1)). These are the genes that could be locally regulated by GATA1, while the rest of the genes (group (2)) are candidates for exclusively distal regulation. 38.0% (or 32.9%) of the locally regulated induced genes (or repressed genes) have GATA2 bound in the neighborhood before GATA1 restoration. 63.1% of the locally regulated induced genes have both TAL1 and GATA1, but only 43.1% of the locally regulated repressed genes have both bound. (group (4))

Comparison of group (4) (GATA1 and TAL1 joint occupancy) with groups (5)-(8) tell us about how the TFs got to the genes. Group (5) shows TAL1 is recruited along with GATA1 to 254 (21.0%) of the induced genes with jointly occupancy of GATA1 and TAL1 in the neighborhood. There are fewer examples (171) of this for repressed genes, but it does happen 22.6% of the time. Curiously, it is more frequently the case (32.4%) of the time for nonreponsive genes, but only 315 of them are in the GATA1+TAL1+ category.

Group (6) shows that when TAL1 is recruited along with GATA1, 33.1% and 27.5% of the time it is to a gene that already had GATA2 on it in G1E, for induced genes and repressed genes, respectively. 

Groups (7) and (8) show that TAL1 is present before restoration of GATA1 in 72.0% of the cases for induced GATA1+TAL1+ genes, and in 41.9% of the cases the gene is jointly occupied by GATA2 and TAL1 in G1E cells. Numbers are lower but percentages are also high for the other response categories: 538/756 or 71.2% of repressed and 188/315 or 59.7% of nonresponsive genes in the GATA1+TAL1+ category.

Groups (9) and (10) focus on genes occupied by TAL1 in G1E but this is lost upon binding of GATA1 in G1E-ER4+E2; they are further segregated by whether they were jointly occupied by GATA2 in G1E. 277 or 50.1% of the genes in these groups are repressed genes. The 277 repressed genes with loss of TAL1 approach 15.8% the repressed GATA1+ genes.
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Supplementary Figure 15. Frequency and dynamics of occupancy by transcription factors in the neighborhood of all genes in the response categories. This figure was graphed in the same as Fig. 6 in the main text except that all responsive genes were used.
SUPPLEMENTARY METHODS
Methods for experiments described in the supplement are in the appropriate sections of the supplement. The Methods presented here expand on the “Methods Summary” in the main text.

Isolation of Ter119+ cells from mouse fetal livers

Erythroid cells are obtained by enriching fresh E14.5 fetal liver preps for Ter119-positive cells using an anti-Ter119 antibody coupled to magnetic beads (StemCell EasySep Kit #18554).

Categorization of genes according to their expression response upon GATA1 restoration

Three biological replicates of G1E-ER4 cells were treated with 10-8 mol/L beta-estradiol and total RNA was extracted at 0, 3, 7, 14, 21, and 30 hours. The samples were hybridized to GeneChip Mouse Genome 430 2.0 Arrays (MOE430v2) from Affymetrix. These results are available from the Gene Expression Omnibus (submission GSE18042) (Cheng et al. 2009). Hybridization signals on each microarray were normalized by Robust Multi-Array Average (RMA) Expression methods (Irizarry et al. 2003) and probe sets were mapped back to known RefSeq (Pruitt and Maglott 2001) and Ensembl 
 ADDIN EN.CITE 
(Hubbard et al. 2007)
 genes. We identified and filtered outlier probes that were not within 3 standard deviations of the average log2 transformed signal intensities of a gene. The hybridization intensities of the remaining probes were averaged to compute the level of expression at each time point. Pairwise t-tests between the expression level at all time points and at 0 hours were computed with the Limma package in R (Smyth 2004). To account for multiple testing, we implemented the Benjamini and Hochberg (1995) False Discovery Rate adjustment, implemented in the multtest package in R (Pollard et al. 2005). The genes that passed an FDR threshold of 0.001 when compared with the zero time point were considered responsive. These responsive genes were then subgrouped according to the induction and repression profiles of expression over time using the Ordered Restricted Inference for Ordered Gene Expression (ORIOGEN) 5 package (Peddada et al. 2005). Briefly, for each gene the largest goodness-of-fit statistic is identified under a set of expression profiles, namely induced, repressed or cyclic, and this profile is tested under a null hypothesis of no change in mean expression across the 6 time points. This is bootstrapped 10,000 times and statistically significant genes are identified and assigned to the expression profile with the best fit. For the purposes on this study, we filtered out genes that show cyclic patterns. Further, genes that do not show a fold change greater than 1.1 at all time points when compared to the expression level at 0 hour are classified as nonresponsive.
Using the expression levels of the genes at the six time points computed by the above approach, we examined the expression profile of the genes during erythropoiesis (Figure 2 in the main text). The kernel density curves were plotted for the log2 transformed expression levels at 0 hour after GATA1 induction of all the genes, the non-responsive genes, and the responsive genes, represented by green, blue, and red curves respectively. Furthermore, the kernel density curves were plotted for the induced genes and the repressed genes (in B and C respectively) at 0hr, 3hrs, 7hrs, 14hrs, 21hrs, and 30hrs after GATA1 induction to show how the expression profiles change after GATA1 induction.  

ChIP-seq

A total of 7×107 cells were used for a chromatin immunoprecipitation (ChIP) assay with an antibody that recognizes TAL1 (Santa Cruz Biotechnology, catalog number 12984), GATA2 (Santa Cruz Biotechnology, catalog number 9008), H3K4me1 (Abcam catalog number ab8895), H3K4me3 (Millipore catalog number 07-473), H3K27me3 (Millipore catalog number 07-449), and H3K9me3 (Abcam catalog number ab8898) respectively. The quality of ChIP DNA was assessed by qPCR using primers that amplify positive and negative control genomic regions. 

The primers used for the quality test of the ChIP DNA are listed as follows:

	ChIP target
	Control
	Information
	Sequence

	H3K4me1
	Positive
	A region 0.6kb downstream of beta-globin HS-2 which has been reported to have H3K4me1 enrichment
	Forward primer: CTCTCATGGATGGTAACTAGTGGCT
Reverse primer: GGCCTTCTCTGCACAGATGTGTTT

	H3K4me1
	Negative
	A region with low level of any transcription factor occupancy we have mapped and devoid of any known genes
	Forward primer: AAGGTACATGTTGGGTGGCCAAGT
Reverse primer: ATGTCACCTGCATTGCCCTCTAAG

	H3K4me3
	Positive
	The promoter region of a housekeeping gene Gapdh
	Forward primer: TTTGAAATGTGCACGCACCAAGCG
Reverse primer: CCAAGGACTCCTCGTCCTTAAGTT

	H3K4me3
	Negative
	The promoter region of a repressed gene Myt1 whose promoter is a target of PRC complexes
	Forward primer: TTGTAAAGCACTTTCGCCAGAGCC 
Reverse primer: ATTATGCCAACCATGCTCACTCCC

	H3K27me3
	Positive
	The promoter region of a repressed gene Myt1 whose promoter is a target of PRC complexes
	Forward primer: TTGTAAAGCACTTTCGCCAGAGCC 
Reverse primer: ATTATGCCAACCATGCTCACTCCC

	H3K27me3
	Negative
	The promoter region of a housekeeping gene Gapdh
	Forward primer: TTTGAAATGTGCACGCACCAAGCG
Reverse primer: CCAAGGACTCCTCGTCCTTAAGTT

	GATA2
	Positive-1
	74kb downstream of the TSS of gene Kit which is down-regulated during maturation of erythroid
	Forward primer: CGTTCCAACTTCTGTCTCTTTGG 

Reverse primer: GAGGCTCATTTAGACAGGTTTGC

	GATA2
	Positive-2
	114kb upstream of the TSS of gene Kit which is down-regulated during maturation of erythroid
	Forward primer: GCACACAGGACCTGACTCCA
Reverse primer: GTTCTGAGATGCGGTTGCTG

	GATA2
	Positive-3
	58kb downstream of the TSS of gene Kit which is down-regulated during maturation of erythroid
	Forward primer: GGAGGAGTTAGGGAATATGTCGATAG
Reverse primer: GCAGTTCTCCAGGTTGAGTCAGA

	GATA2
	Negative-1
	78kb upstream of the TSS of gene Kit which is down-regulated during maturation of erythroid
	Forward primer: CACGCGCTATGCACATCCT
Reverse primer: TGCCCAGCACATGACAACTT

	GATA2
	Negative-2
	98kb upstream of the TSS of gene Kit which is down-regulated during maturation of erythroid
	Forward primer: GCTTCTTGAGGTTCATTAGATAAAAACA
Reverse primer: GACCCCGGAACTGAGAGATG

	TAL1
	Positive-1
	GHP004, a validated GATA1 OS which also shows considerate TAL1 binding level from our previous ChIP-chip data
	Forward primer: TCCTGTTGCTGATAGTGGGATGCT
Reverse primer: TAACTTCTCAAACCTGGCAGTCCTGG

	TAL1
	Positive-2
	GHP221, a validated GATA1 OS which also shows considerate TAL1 binding level from our previous ChIP-chip data
	Forward primer: GCTATCAGCTGGCCACAATTGCTT
Reverse primer: CAAGATAGATGTGCAGAGCCCAGA

	TAL1
	Positive-3
	GHP106, a validated GATA1 OS which also shows considerate TAL1 binding level from our previous ChIP-chip data
	Forward primer: ACACCCTCCTGGTAAGCAAGGTAA
Reverse primer: ATCAAGGCTATGCAGGACAGAGGT

	TAL1
	Negative
	An intergenic region downstream of gene Zfpm1
	Forward primer: CTAGGCGTCCTCGGTGTTTG
Reverse primer: ACCACCCGGATGCCCATAAAC


ChIP DNA by each antibody in both cell lines was amplified by Illumina ChIP-Seq library preparation kit. To prepare the sequencing libraries, the ChIP DNA fragments were repaired to generate blunt ends, with a single A nucleotide adding to each end. Double-stranded Illumina adaptors were ligated to both ends of the fragments. Ligation products were amplified by 18 cycles of PCR, and the PCR products between 200 and 400 bp were gel purified. The quality of the library was evaluated by qPCR and bio-analyzer to make sure it meets the requirements by Illumina.

The bio-analyzer was used to measure the approximate length of the ChIP DNA, compiled in the following table. 

	Target
	Cell line
	Biological replicate
	Approximate DNA length (bp)

	GATA1
	G1E-ER4+E2
	1
	206

	
	
	2
	423

	GATA1
	Ter119+
	1
	294

	
	
	2
	308

	GATA2
	G1E
	1
	232

	
	
	2
	236

	TAL1
	G1E
	1
	264

	
	
	2
	308

	TAL1
	G1E-ER4+E2
	1
	200

	
	
	2
	290

	TAL1
	Ter119+
	1
	287

	
	
	2
	273

	H3K4me1
	G1E
	1
	268

	
	
	2
	317

	H3K4me1
	G1E-ER4+E2
	1
	266

	
	
	2
	248

	H3K4me3
	G1E
	1
	266

	
	
	2
	298

	H3K4me3
	G1E-ER4+E2
	1
	252

	
	
	2
	237

	H3K27me3
	G1E
	1
	243

	
	
	2
	287

	H3K27me3
	G1E-ER4+E2
	1
	270

	
	
	2
	355

	H3K9me3
	G1E
	1
	297

	
	
	2
	252

	H3K9me3
	G1E-ER4+E2
	1
	279

	
	
	2
	315


The ChIP DNA library was sequenced in single-read mode on the Illumina Genome Analyzer IIx platform or Illumina HiSeq 2000 platform. Cluster generation and sequencing chemistry were performed using Illumina-supplied kits as appropriate. The resulting sequence reads were mapped to the mouse genome (mm8 assembly) using the program Efficient Local Alignment of Nucleotide Data (ELAND) or Bowtie.

RNA seq


We sequenced polyA+ RNA from G1E cells and from G1E-ER4 cells induced for 24 hours. Total RNA was extracted from 5-10 million cells using TRIzol Reagent with the Ambion PureLink RNA Mini Kit. Polyadenylated RNA was isolated using Invitrogen's Dynabeads mRNA Purification Kit and the polyA+ selection procedure was performed twice. Isolated mRNA was fragmented to an average length of ~200bp using 5× fragmentation buffer (200 mM Tris acetate, pH 8.2, 500 mM potassium acetate, and 150 mM magnesium acetate) in a thermocycler at 94 °C for 2 min 30 s. First-strand c-DNA was synthesised from 100ng of mRNA with 3ug random primers using Invitrogen's Thermoscript RT-PCR System. Second-strand synthesis and library preparation were done using the mRNA sequencing sample preparation guide and Illumina's standard library preparation protocol for the ChIP-seq libraries respectively. The sequencing was performed on the Illumina GA IIx platform as for the ChIP-seq libraries with two replicates for each cell line, generating ~ 24 million 36-nt single-end reads for each replicate. Mapping to the mm9 genome was done using TopHat with default parameters, except for 'min-anchor-length' which was set to 5.
Peak calling

MACS (Zhang et al. 2008) was used to call peaks for TAL1 occupancy in both G1E cell lines and Ter119+ cell line, and GATA1 occupancy in Ter119+ cell line, respectively. The mfold (high-confidence enrichment ratio against background) parameter was set to be 12. The bw (band width) parameter was set as half of the ChIP DNA fragment length measured by bio-analyzer. For the calling of TAL1 peaks in G1E-ER4+E2, ChIP-seq reads from two biological replicates were concatenated as input for MACS, thus the mean of the DNA fragment lengths was used for the calculation of the bw parameter. GATA1 occupied segments in Ter119+ were called from the pool of the two replicates, while the peaks in G1E-ER4+E2 cell line are the ones deduced from the ChIP-seq data in Cheng et al. (2009). 
The ChIP-seq signals for GATA2 in G1E have a lower signal-to-noise ratio than the ChIP-seq data for other transcription factors, so we employed the PASS2 peak-calling method (Chen and Zhang 2010) that incorporates related supporting information to reduce the false positives. Since the replacement of GATA2 by GATA1 has been observed at the same binding motif (Martowicz et al. 2005) we used GATA1 raw ChIP-seq signals in G1E-ER4+E2 as the supporting track to improve GATA2 peak-calling in G1E. The logistic regression model for generating the supporting binding probability was trained by the raw signals of GATA1 in G1E-ER4+E2 (predictor) and 370 stringently predicted GATA2 peaks (binary response) by MACS in chromosome 7 (mfold = 10, p-value cutoff = 1e-05). The raw ChIP-seq GATA2 signals are combined by taking the sum of replicates. While the signals in chromosome 1 and 12 are noisier than other chromosomes, we used FDR 1% cutoff for these two chromosomes and set FDR 5% for others. A total of 12,973 GATA2 peaks were detected in G1E cells by PASS2. In addition, we required the GATA2 peaks to overlap with DHSs in order to consider them in further analysis.

One evaluation of the ChIP-seq quality was to compare to previously published data using ChIP-chip 
 ADDIN EN.CITE 
(Cheng et al. 2009; Zhang et al. 2009)
. We compared the new ChIP-seq data genome wide with ChIP-chip for GATA2 (in G1E cell line) and TAL1 (in both cell lines) in a 67Mb region on chromosome 7, and GATA1 (in G1E-ER4+E2 cell line) on the whole genome. Peaks were called by the program Mpeak for TFs. We did comparison between the ChIP-chip peaks and the ChIP-seq peaks to get the number of ChIP-chip peaks that overlap with ChIP-seq peaks, on the whole genome for GATA1 and in the 67Mb region for the others. For the comparison between TAL1 ChIP-seq and ChIP-chip peaks, we first ranked the ChIP-chip peaks according to the mean ChIP-chip signals at the peaks, and then we counted the number of ChIP-seq peaks in that 67Mb region and only used the same number of ChIP-chip peaks in the top ranking for the comparison. 
DNase-seq
The DNaseI hypersensitivity assay was performed as previously described 
 ADDIN EN.CITE 
(Crawford et al. 2006; Boyle et al. 2008; Song and Crawford 2010)
. Briefly, nuclei isolated from G1E and G1E-ER4+E2 cells were lightly digested with DNaseI to expose regions hypersensitive to the enzyme. Digested ends of the DNA were ligated to a biotinylated and phosphorylated linker and enriched on streptavidin-coated DynaI beads. This was followed by MmeI restriction enzyme digestion, which cuts 20 bases downstream of the recognition site contained within the biotinylated linker. A second linker was ligated to the MmeI cut sites and ligation-mediated polymerase chain reaction performed prior to being sequenced on Illumina’s GAII sequencers. Sequenced reads were aligned to the mouse mm8 reference sequence using BWA (Li and Durbin 2009). For mapped reads, filters were used to correct for artifacts introduced by PCR overrepresentation and ploidy variability, the latter of which was addressed by creating a background reference utilizing the corresponding cell’s ChIP input data, Peak calling was performed as previously described using F-seq, a kernel density estimator (Boyle et al. 2008).
Chromatin states and GATA1 occupied DNA segments
To examine the dynamics of chromatin states at GATA1 occupied segments (OSs) upon GATA1 restoration, we calculated the proportion of GATA1 OSs covered by the chromatin states which is the number of nucleotides on the GATA1 OS covered by each of the six chromatin states divided by the length of that GATA1 OS. Then the 11,491 GATA1 OSs were clustered by k-means (k=6) clustering according to the proportions of coverage. GATA1 OSs in cluster 1, 2, 3, 4, 5, and 6 are predominantly covered by chromatin state 1, 2, 3, 4, 5, and 6 respectively. Then we counted the number of GATA1 OSs that fall in each of the six chromatin state types in both cell lines, in order to show how the dominant chromatin states change at GATA1 OSs after GATA1 induction (Fig. 3D in main text).

Chromatin states in the gene neighborhood and the relationship with gene expression and response

The proportion of each gene neighborhood, defined as 10kb upstream of TSS and 10kb downstream of poly-A signal, covered by each of the six chromatin states is shown by a bar separated into six colored parts, with red representing state 1, yellow representing state 2, purple representing state 3, blue representing state 4, green representing state 5, and grey representing state 6, as shown in Fig. 4 in the main text. The genes were first separated into six partitions based on the ranges of their log2 transformed expression levels at 0hr after GATA1 induction: (1) less than 4, (2) from 4 to less than 6, (3) from 6 to less than 8, (4) from 8 to less than 10, (5) from 10 to less than 12, and (6) no less than 12. Within each partition, the genes were sorted orderly by the proportion covered by state 1, 3, 4, 5, and 6. The log2 transformed expression levels at 0hr after GATA1 induction was shown by the purple dots. And the expression change, or the difference of the log2 transformed expression levels between 30hr and 0hr after GATA1 induction, was shown by the barplot. The up-regulated genes, the down-regulated genes, the non-responsive genes, and the remaining genes were marked by red, blue, yellow, and grey colors respectively.
K-means clustering

To examine the histone modification patterns at gene promoter regions, we examined 4kb intervals centered on the TSS of all the genes. The mean of the numbers of mapped reads from the 10bp windows (i.e. ER4rpm) within each 4kb interval was calculated for each of the four histone modifications. So each 4kb interval has four mean values corresponding to the four histone modifications. Normalization was done for the mean values within each histone modification type. Specifically, the normalized value was calculated as the raw value subtracting the mean of the values in the group and then divided by the standard deviation of the group. Based on the normalized values, k-means clustering was done to separate the gene TSS intervals into seven groups. The clustering was shown by heatmap, with color from blue to red representing the un-normalized log 2 transformed mean read counts from low to high for each of the histone modifications. The distribution of the log 2 transformed expression levels of the genes at 30hr after GATA1 induction in each cluster was shown by box plots. The same clustering method was used for Supplementary Figure 12 whereas the TSS intervals were clustered by the normalized log 2 ratio of the ChIP-seq read counts (i. e. adjM’) and the box plots show the log 2 transformed expression level changes on the right.
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